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ABStR ACt

Reduced bone mineral density (BMD) in Functional Hypothalamic 
Amenorrhea (FHA) is mainly related to hypoestrogenism, but 
other hormonal derangement (reduced conversion of T4–T3 and 
GH resistance) can play a role. These hormones are involved in 
antioxidant systems regulation. We evaluated the impact of 
hormonal alterations, with special focus on low T3 and IGF-1 
levels, on antioxidant systems as a link with osteoporosis in FHA. 
Forty-three FHA patients, 15–34 years, with BMI range 17.3–
23.4 kg/m2, were divided in 2 groups according to fT3 levels; 
group A (n = 22), low fT3 ( < 2.4 pg/ml) and group B (n = 21), nor-
mal fT3 (≥ 2.4 pg/ml). We evaluated hormonal parameters (fT3, 
fT4, TSH, IGF-1, FSH, LH, estradiol, DHEAS, testosterone, corti-
sol), bone metabolism (calcium, phosphorus, 25-OH Vitamin D, 
PTH, β-crosslaps, bone alkaline phosphatase) and total antioxi-
dant capacity (TAC), expressed as LAG (latency time in radical 
species appearance using spectrophotometric method). BMD 
was assessed by DEXA. Group A patients exhibited significantly 
lower levels of IGF-1 (159.76 ± 14.79 vs. 220.05 ± 15.25 ng/ml) 
and osteocalcin (17.51 ± 1.14 vs. 21.49 ± 1.56 ng/ml); LAG values 
were significantly higher in A (66.33 ± 1.74 s) vs. B (54.62 ± 1.74 s). 
A significant direct correlation was found between both IGF-1 
and fT3 with osteocalcin (r² = 0.22, p = 0.0049 and r² = 0.34, 
p = 0.0001, respectively). No difference in LAG between groups 
according to IGF-1 were found. These data show a correlation 
between altered bone turnover and low fT3, which is highly prev-
alent in FHA. Low fT3 levels may contribute to reduced BMD. 
Oxidative stress could be the link underlying different bone turn-
over pattern and endocrine dysfunction in FHA.

Introduction
Secondary amenorrhea, defined as a 3 months absence of men-
struation in a previously cycling woman, occurs in 3–5 % of women, 
and 20–35 % of them are affected by functional hypothalamic 
amenorrhea (FHA) [1]. FHA is a form of chronic anovulation, which 
is not related to an identifiable organic cause [2], classified as a hy-

pogonadotropic hypogonadism [3]. It is a “functional” condition 
because the correction of causal behavioral factors, such as stress, 
anxiety, excessive physical exercise and weight loss, can normalize 
ovulatory function.

It is known that the main feature is a reduction in GnRH (gon-
adotropin-releasing hormone) signal, which manifests as reduced 
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lutenizing hormone (LH) pulse frequency [3] and follicle-stimulat-
ing hormone (FSH) levels insufficient to maintain an adequate fol-
liculogenesis and ovulatory function as demonstrated by GnRH or 
gonadotropin exogenous use, which can guarantee folliculogene-
sis [3]. The consequent hypoestrogenism has a negative mark on 
different aspects of female health [4, 5].

However, other endocrine and metabolic dysfunction, such as 
an activation in hypothalamic-pituitary-adrenal axis (HPA) [4, 6], 
assayable serum growth hormone (GH) levels during night-time 
and lower 24 h prolactin (PRL) levels [7], low serum insulin and in-
sulin-like growth factor 1 (IGF-1), have been described. Moreover, 
a consequence of the activation of HPS axis is the enhanced pro-
duction of endogenous opioid peptides (mostly endorphins, en-
kephalins, and dynorphin) [8] and other neurohormonal factors 
 involved in stress response such as dopamine, neurotensin, sero-
tonin [9] and several neuropeptides: substance P, neuropeptide Y 
(NPY), and calcitonin gene-related peptide (CGRP) [4].

An alteration of hypothalamic-pituitary-thyroid axis (HPT) has also 
been detected including a low-to-normal level of thyrotropin, a low 
level of triiodothyronine, and increased level of reverse triiodothyro-
nine [5], a condition defined “non-thyroidal illness syndrome” (NTIS). 
Usually, this condition, described in other chronic disease, is consid-
ered an adaptive mechanism and its treatment is still debated. How-
ever, it could contribute to the clinical presentation of FHA.

One of the most frequent event is the decrease of bone mass densi-
ty, related to an increase of fracture risk; it is possible to affirm that os-
teopenia and osteoporosis are the main long-term complications of FHA 
[5]. This problem has a great social relevance when considering the cost 
of morbidity and mortality, which usually are considered only in ageing 
population [10]. The prevalence in young population, before peak bone 
density is reached, strengthens the interest of the topic.

It is well known that improper diet, leading to low calcium and 
vitamin D3 intake, malnutrition, excessive exercises [11] and espe-
cially estrogens play a critical role in bone metabolism [12]. The re-
sult of estrogens activity is the activation bone remodeling units, 
an enhancement in bone formation and a suppression of bone re-
sorption [12]. Androgens, fT3, GH, and IGF-1 are the other hor-
mones, which exert a positive influence on bone formation [13], 
even if their role is not so clear as estrogens one.

One of the possible mechanism through which these hormones 
can exert their activity on bone may probably be oxidative stress 
(OS). OS is caused by the unbalancing between production of free 
radicals, molecules characterized by high reactivity due to one or 
more unpaired electrons in the external orbital, and antioxidant 
defenses in the biological systems [14]. Radical oxygen species 
(ROS) greatly influence the generation and survival of osteoclasts, 
osteoblasts, and osteocytes and loss of estrogens and androgens 
decrease defense against OS in bone [15]. On the other hand, dif-
ferent hormones are able to modulate antioxidant systems, as pre-
viously reviewed, in particular thyroid hormones [16] and NTIS have 
been related to OS.

The aim of this observational cohort study is therefore to evaluate 
the impact of hormonal alterations and antioxidant systems on bone 
turnover in FHA, with a particular focus on NTIS. In order to evaluate 
the impact of low fT3 on bone turnover parameters and antioxidant 
levels, we have divided the patients according to fT3 levels in 2 groups 
to explore the differences between low- and normal-fT3 patients, hy-

pothesizing oxidative stress as a possible mechanism contributing to 
reduced bone mineral density (BMD) in such patients.

Patients and Methods
Subjects involved in this study were admitted to the University Hos-
pital “Policlinico Gemelli” Department of Internal Medicine and 
were enrolled after being given an explanation of purposes and na-
ture of the study, conducted in accordance with the Declaration of 
Helsinki, as revised in 2013. The study protocol was approved by 
Review Board of the “Institute of Medical Pathology” of our Hospi-
tal and written informed consent was obtained from all patients.

We included 43 patients with diagnosis of hypothalamic amen-
orrhea lasting at least 3 months, confirmed by typical endocrine pic-
ture (see below) and absent response to medroxyprogesterone ad-
ministration, according to the  Endocrine Society Practice Guidelines 
[2]. They were aged 15–34 years, with a BMI range 17.3–23.4 kg/m2.

Criteria of exclusion were: Anorexia nervosa according to DSM V 
criteria [17], diabetes mellitus, liver or kidney chronic failure, corti-
costeroid therapy, hyperparathyroidism, obesity, malabsorption or 
other gastro-enteric diseases, and neurological diseases. Women with 
secondary amenorrhea due to other causes, specifically hyperprol-
actinemia, Cushing’s syndrome, congenital adrenal hyperplasia, pol-
ycystic ovarian syndrome or primary ovarian failure, were excluded.

Patients were divided in 2 groups according to fT3 levels: group 
A (low fT3, n = 22, fT3 values < 2.4 pg/ml according to laboratory 
range), group B (normal fT3, n = 21, fT3 values ≥ 2.4 pg/ml).

An endocrine evaluation including fT3, fT4, thyroid-stimulating 
hormone (TSH), IGF-1, follicle-stimulating hormone (FSH), luteiniz-
ing hormone (LH), estradiol (E2), dehydroepiandrosterone-sulfate 
(DHEAS), testosterone (T), and cortisol levels was performed; bone 
metabolic parameters were also evaluated (25OH-vitamin D, calci-
um, phosphorus, parathormone (PTH), osteocalcin (OC), β-cross-
laps, and bone alkaline phosphatase. For the evaluation of antioxi-
dant systems, blood samples were collected at 08:00 AM, after over-
night fast, immediately centrifuged and stored at –80  °C until 
assayed, to evaluate Total Antioxidant Capacity (TAC). Finally, bone 
mineral density was assessed by DEXA.

The following methods were used for hormone assay: Electro-
ChemiLuminescent method (ECLIA) for PTH (n.r. 14–72 pg/ml), OC 
(n.r. 10–45 ng/ml), β-crosslaps (n.r. 0.2–0.7 ng/ml); ChemoLumines-
cent Immunoassay for TSH (n.r. 0.35–2.80 μUI/ml), fT3 (n.r. 2.4–
4.2 ng/ml), fT4 (n.r. 8.5–16.5 pg/ml), IGF-1 (n.r. 80–330 ng/ml), FSH 
(2.5–11 mU/ml), LH (2.5–10 mU/ml), E2 (normal values < 44 ng/ml), 
DHEAS (n.r. 800–3500 ng/ml), T (n.r. 0.20–2.00 ng/ml), cortisol (n.r 
60–220 ng/ml), vitamin D (n.r. 31–100 ng/ml), bone alkaline phos-
phatase (n.r 5.5–25 μg/l), and Chemiluminescent Microparticle Im-
munoAssay (CMIA) for LH (2.5–15 mU/ml). Calcium was measured 
with Arsenazo III method, phosphate with colorimetric assay.

As IGF-1 is concerned, we also calculated the median value, ac-
cording to sex and age, using reference provided by Liason® Ana-
lizer producer (DiaSorin, Vercelli, Italy), to classify patient with low 
or normal IGF-1.

Total Antioxidant Capacity (TAC) was evaluated, with a modifi-
cation of the method developed by Rice-Evans and Miller [18], as 
previously described [19]. The method is based on the antioxidants 
inhibition of the absorbance of the radical cation ABTS. + formed by 
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interaction between ABTS [2,2′-azinobis(3-ethylbenzothiazo-
line-6-sulfonic acid) diammonium salt; 150 μM] and ferrylmyoglo-
bin radical species, generated by activation of metamyoglobin 
(2.5 μM) with H2O2 (75 μM).

Aliquots of the frozen plasma were thawed at room tempera-
ture and 10 μl of the samples was tested immediately. The manual 
procedure was used with only minor modifications, that is, tem-
perature at 37  °C to be in more physiological conditions and each 
sample assayed alone to carefully control timing and temperature. 
The reaction was started directly in cuvette through H2O2 addition 
after 1 min equilibration of all other reagents (temperature control 
by a thermocouple probe, model 1408 K thermocouple (Digitron 
Instrumentation Ltd, Scunthorpe, UK) and followed for 10 min 
under continuous stirring, monitoring at 734 nm, typical of the 
spectroscopically detectable ABTS. + . The presence of chain-break-
ing antioxidants induces a lag time (the Lag phase) in the accumu-
lation of ABTS. + whose duration is proportional to the concentra-
tion of this type of antioxidants. Antioxidant capacity afforded by 
chain-breaking antioxidants is expressed as length of Lag phase 
(LAG, sec). Trolox, a water-soluble tocopherol analogue, was used 
as a reference standard and assayed in all experiments to control 
the system. Absorbance was measured with an Agilent 8453 UV/
Vis spectrophotometer (Palo Alto, CA, USA) equipped with a cu-
vette stirring apparatus and a constant temperature cell holder. 
Measurements of pH were made with a PHM84 Research pH meter 
(Radiometer, Copenhagen, Denmark); the electrode response was 
corrected for temperature. Unless stated differently, experiments 
were repeated 2–3 times; qualitatively similar results were ob-
tained with individual values varying < 8 %. In the Lag mode, the 
assay mainly measures non-proteic and non-enzymatic antioxi-
dants that are primarily extracellular chainbreaking antioxidants, 
such as ascorbate, urate, and glutathione.

BMD was assessed at the neck of the right hip femur and at the 
lumbar spine through DXA scan with Hologic® Discovery A (Holog-
ic, Inc., Bedford, MA, USA). Only 4 patients were under 20 years of 
age and a Z-score < –2 was used to define “low bone density for 
chronologic age” [20]; in other patients T-score was used to define 
osteopenia/osteoporosis.

Statistical analysis
Mean and Standard Error (SEM) were used to describe quantitative 
variables. The Mann–Whitney U-Test was used to evaluate differ-
ences in hormonal and bone metabolism parameters between the 
2 groups. Analysis of variance (ANOVA) was used for comparison 
among different groups. Spearman correlation coefficient was used 

to investigate the association between fT3 or IGF-1 vs. OC. A value 
of p < 0.05 was considered statistically significant and the analysis 
was performed using Stata 13.

Results
In our cohort, 22 patients exhibited low fT3 concentration (group A), 
while 21 patients showed a value in the normal range (group B). 
▶table 1 depicts population general features, showing no signifi-
cant differences in age, BMI, time of onset and length of amenor-
rhea at the examination.

DEXA showed a worse condition in group A, as illustrated in ▶Fig. 1 
(mean femur neck T-score ranged from –0.40 to –2.20 in group A, 
from + 1.80 to –1.60 in group B; mean lumbar T-score from –0.60 to 
–3.40 in group A, from + 0.20 to –2.90 in group B), defining, in group A, 
34 % osteoporosis and 66 % osteopenia, and, in group B, 8 % osteo-
porosis, 75 % osteopenia and 17 % normal bone density. In such eval-
uation only 4 patients, who were aged < 20, were not included.

▶table 2 shows mean ± SEM levels of the studied hormones and 
bone metabolism parameters; in ▶Fig. 2, IGF-1 and OC values in 2 
groups are also shown. Both parameters were significantly lower 
in group A. Moreover, a significant correlation was present when 
plotting fT3 and IGF-1 values (r2 = 0.29; p = 0.0003). The 2 groups 
also significantly differed in cortisol values (▶table 1). Both fT3 
and IGF-1 significantly correlated with OC levels (▶Fig. 3).

Concerning oxidative parameters, group A presented higher lev-
els of LAG than group B (▶Fig. 4). On the contrary, when dividing 
patient according to IGF-1 levels (separating patients IGF-1 levels 
over or under the median for each age), no differences in LAG val-
ues were observed.

Finally, interesting results were obtained with a further stratifi-
cation in 3 groups of patients according to fT3 levels, separating 
group B in 2 subgroups according to median value of fT3 observed 
in this one (2.6 pg/ml). In fact, among 21 patients, 12 exhibited 
low-normal values (2.4–2.6 pg/ml) and 9 normal values. Mean OC 
level in these 3 subgroups are reported in (▶Fig. 1S) (supplemen-
tary material). We found that also in low-normal fT3 patients OC 
levels were significantly lower than in normal fT3 patients.

Discussion
Our data confirm multi-hormonal derangement in FHA, with neg-
ative impact on bone metabolism, according to literature [3–9], 
adding some new information on their reciprocal influence and reg-
ulation on antioxidant systems.

▶table 1 Mean ± SEM of population general features.

Age (years) BMI (kg/m2) time of onset (years) Length of amenorrhea (months)

Group A 17–34 (25.6 ± 1.2) 19.7 ± 0.35 24.14 ± 1.6 10.15 ± 1.1

Group B 19–34 (26.1 ± 1) 19.45 ± 0.52 24.78 ± 1.4 8.2 ± 0.7

p NS NS NS NS

NS: Not significant.
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In our cohort, a significant number of patients showed low fT3 
levels. Data of BMD in our low-fT3 patients showed a worse picture 
in comparison to normal ones. Low fT3 syndrome, usually consid-
ered as an adaptive mechanism, therefore not to be treated by re-
placement therapy, as in other condition of systemic diseases [21], 
could be responsible for negative consequences in the bone, rep-
resenting a negative worsening factor in synergy with low IGF-1 
and high cortisol levels.

When dividing patients according to fT3 levels, we found signifi-
cantly lower levels of OC, IGF-1, and significantly increased cortisol 
levels. On the contrary, estradiol levels did not differ between the 2 
groups. Moreover, a significant correlation was present between fT3 
and IGF-1. Both IGF-1 and fT3 significantly correlated with osteocal-
cin, accordingly to a positive action of both on osteoblastic activity.

A condition of GH resistance is present in patients affected by 
anorexia nervosa [22]. Even our patients showed low levels of IGF-1, 

significantly correlated with fT3 and osteocalcin. Although GH it-
self was not measured in our study, the mechanism involved in FHA 
is probably the same. Low IGF-1 levels are associated with an in-
creased fracture risk both in men [23] and women [24]. Both GH, 
via direct action, and locally produced IGF-1 exert independent, 
but integrated effects on skeletal cytotypes; the cellular machin-
ery is even more elaborate when considering the modulatory ac-
tivity of IGF-binding proteins [25]. Moreover estrogens have pro-
found interactions with such systems, also explaining sex-related 
differences in bone metabolism [26]. Recently, other mechanisms 
have been claimed to explain GH resistance in anorexia nervosa 
[27], such as increased FGF-21, low insulin and increased ghrelin, 
the increased expression of the deacetylase Sirtuin-1; all these fac-
tor underline the link between metabolic request and defense 
mechanisms. If such mechanisms operate also in other forms of 
FHA is not known. Anyhow, in our study IGF-1 levels correlated with 

▶table 2 Mean ± SEM of hormonal parameters and bone metabolism parameters.

Group A Group B p

fT3 (pg/ml) 2.19 ± 0.04 2.68 ± 0.06  < 0.05

fT4 (pg/ml) 9.20 ± 0.24 10.18 ± 0.27 NS

TSH (µUI/ml) 1.41 ± 0.14 1.68 ± 0.22 NS

FSH (mUI/ml) 5.22 ± 0.45 5.70 ± 0.39 NS

LH (mUI/ml) 2.16 ± 0.43 3.64 ± 0.64 NS

E2 (pg/ml) 25.05 ± 2.57 32 ± 3.97 NS

DHEAS (ng/ml) 2513 ± 230.79 2416.53 ± 245.55 NS

T (ng/ml) 0.44 ± 0.06 0.42 ± 0.13 NS

Cortisol (ng/ml) 163.86 ± 13.52 116.84 ± 7.51  < 0.05

Vitamin D (ng/ml) 28.07 ± 2.49 28.84 ± 1.60 NS

Calcium (mg/dl) 9.66 ± 0.06 9.71 ± 0.06 NS

Phosphorus (mg/dl) 3.42 ± 0.11 3.61 ± 0.09 NS

PTH (pg/ml) 35.65 ± 2.42 40.32 ± 3.50 NS

β-Cross-laps (ng/ml) 0.52 ± 0.04 0.53 ± 0.04 NS

Bone alkaline phosphatase (µg/l) 10.85 ± 4.62 23.18 ± 7.37 NS

NS: Not significant.

▶Fig. 1 Box plot showing T-score values at lumbar and femoral level in our patients aged > 20 years. * p < 0.05.
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▶Fig. 2 Mean ± SEM values of OC (left panel) and IGF-1 (right panel) in the 2 groups.  * p < 0.05.

▶Fig. 3 Correlations between OC and fT3 (left panel) and IGF-1 (right panel).

▶Fig. 4 Mean ± SEM values of LAG in the 2 groups in accordance to fT3 values (left panel) and IGF-1 (right panel).  *  p < 0.05, LAG: Duration of 
latency phase before the appearance of radical species (see text for explanation).
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osteocalcin, suggesting a promoting action on osteoblast produc-
tion. IGF-1 and OC show parallel patterns in different models in lit-
erature [28, 29], however, studies about skeletal maturation sug-
gest a triggering action on OC synthesis [30].

The effects of low fT3 are less clear. Osteoblasts have receptors 
for thyroid hormone [31]; experimental animals KO for thyroid re-
ceptors have a reduced trabecular BMD and high marrow fat [32], 
resembling alterations of hypoestrogenic women. Studies on fT3 
actions on osteoblasts are contradictory [33], especially when con-
sidering that both hypo- and hyperthyroidism can induce osteopo-
rosis; but they globally suggest positive fT3 effect on differentia-
tion and activity of osteoblasts, while the actions on osteoclasts 
seem to be indirect. As differentiation and proliferation is con-
cerned, induction of IGF-1, IGFBP-2, and -4, FGF receptors and sig-
naling are stimulated by fT3 [34–36]. About osteoblast activity, fT3 
has been demonstrated to stimulate type I collagen synthesis and 
post-translational modification, alkaline phosphatase expression, 
osteopontin and osteocalcin synthesis and secretion [37, 38]. These 
experimental data well fit with the direct correlation between fT3 
and osteocalcin in our patients. The effect on osteoclasts, mediated 
by osteoprotegerin, are still controversial [33]. In the model of FHA, 
the problem could be related to local deiodination rather than low 
circulating fT3 levels; in such sense, studies performed in mice, with 
deletion of type 2 deiodinases gene (dio2) suggest the key role of 
fT3 in osteoblast activity [39].

Cortisol levels, increased in group A could also have a relevant 
role in our findings, directly contributing to reduced bone mineral 
density, but also influencing the conversion of l-thyroxine to fT3 
[40]. Both increased cortisol and low fT3 could express a worse hy-
pothalamic derangement and metabolic condition of this group. 
Whatever the mechanism, cortisol levels were not themselves cor-
related significantly neither to OC, nor to fT3 and LAG.

A great importance in negative skeletal condition is usually at-
tributed to the state of hypoestrogenism [22], since estrogens 
exert a triple action, activating bone remodeling units, suppress-
ing bone reabsorption and stimulating bone formation [12]. Oste-
oclastic activity is inhibited by different mechanisms [41], includ-
ing inhibition of RANKL production and increased osteoprotegerin 
gene expression [42]. Other cytokines, favoring bone reabsorption, 
such as macrophage-colony stimulating factor (M-CSF), interleu-
kins 1 and 6, tumor necrosis factor α (TNF-α), are inhibited by 
 estrogens. They indirectly help osteoblastic activity, decreasing 
sclerostin (which inhibits osteoblastic WNT signaling) [43] and 
preadipocyte factor-1 (Pref-1), member of EGF family, which inhib-
its the differentiation of osteoblasts from mesenchimal progenitor 
cells [44]. Finally, estrogens stimulate other effectors, such as bone 
morphogenetic protein 6-BMP6 and transforming growth factor 
β; but also IGF-1, locally produced in the bone after GH stimulation, 
is augmented by estrogens. They also increase the expression of 
vitamin D receptors [45]. Such complex and pleomorphic action 
can obviously have an impact on skeleton and some studies sug-
gest a minimal threshold of 40–50 pg/ml to observe effects on bone 
[46]. However, we did not find differences in estradiol in our 2 
groups, emphasizing additional influences of other systems.

Even if low fT3 and IGF-1 could have a synergic effect on bone, 
our data suggest that they could work with different mechanisms, 
in fact only fT3 seemed to influence antioxidant systems in our pop-

ulation. Greater LAG values in low-fT3 patients suggest a greater 
oxidative stress in such group with a compensatory increase in an-
ti-oxidant systems. Previously we have shown that thyroid hor-
mones profoundly affect the antioxidant defense of the body, lead-
ing to a condition of oxidative stress [16]. Both hyper- and hypo-
thyroidism can induce oxidative stress; but in the case of 
hypothyroidism, the low fT3 condition could worsen the oxidative 
status of the cell, with a vicious circle. Mechanism of competition 
on glutathione, which is a cofactor of deiodinases, but also strong 
antioxidant, have been claimed. Also growth hormone deficiency/
resistance is associated with oxidative stress, even if with a differ-
ent pattern of antioxidants [47]. While in this study we did not find 
differences in TAC in relation to IGF-1, the values of LAG were sig-
nificantly different in groups with low or normal fT3. The augment-
ed LAG could express a compensatory mechanism to a greater ox-
idative stress, directly influencing bone metabolism, as shown in 
other in vivo models [48].

Under this profile, it could be of interest that also patients with 
low-normal fT3 have low osteocalcin level, suggesting that the bi-
ochemical mechanisms operating at cellular levels can be very pre-
cocious, requiring therefore a special attention.

In conclusion, osteopenia/osteoporosis in FHA should be con-
sidered a multifactorial problem. While no doubts exist that low 
estrogens and vitamin D deficiency can play a pivotal role, other 
hormonal derangement, such as low fT3 and IGF-1, although by 
different mechanisms, could be considered in such condition.

Nevertheless, there are two main potential restrictions to con-
sider in the present study. First, the number of subjects in both 
groups is slightly small, so its statistical power is limited, thus our 
findings will need to be confirmed in a larger population. Second, 
this cohort-study and the power analysis cannot draw a cause-ef-
fect conclusion about oxidative stress and osteoporosis in patients 
affected by FHA.
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