Spinal Serotonin and 5HT6 Receptor Levels During Development of Neuropathy and Influence of Blockade of these Receptors on Thermal Hyperalgesia in Diabetic Mice*

Authors
Cagda Celik Sari, Ozgur Gunduz, Ahmet Ulugol

Affiliation
Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey

Key words
diabetic neuropathy, neuropathic pain, serotonin, 5-HT₆ receptors, thermal hyperalgesia

ABSTRACT
Little is known about the role of 5-HT₆ receptors in the pathophysiology of neuropathic pain. The aim of this study is firstly, to investigate the influence of spinal and systemic 5-HT₆ receptors on thermal hyperalgesia, one of the most significant symptoms of neuropathy occurring in diabetes; and secondly to determine spinal lumbar serotonin and 5-HT₆ receptor levels during development of diabetic neuropathy in mice. Diabetes was produced in Balb/c mice with a single injection of streptozocin (150 mg/kg, i.p.). Using the hot plate test, the 5-HT₆ antagonist SB-258585 was given systemically (3, 10, 30 mg/kg) and intrathecally (0.01, 0.1, 1 nmol/mouse) to determine its effect on thermal hyperalgesia. Furthermore, on days 7 and 15 of diabetes, development of thermal hyperalgesia was evaluated in relation to changes in spinal serotonin and 5-HT₆ receptor levels by using LC/MS/MS and Western blot analyses, respectively. Two-way analysis of variance and unpaired t-tests were used to evaluate data from hot-plate tests and 5-HT levels/5-HT₆ receptor expression, respectively. Thermal hyperalgesia was observed in neuropathic mice, starting from day 5 after streptozocin administration. On day 15, systemic, but not intrathecal, SB-258585 attenuated thermal hyperalgesia in neuropathic mice. Spinal serotonin levels did not change during development of hyperalgesia after induction of diabetes, whereas spinal 5-HT₆ receptor levels were significantly reduced on days 7 and 15. Our findings show that systemic, but not spinal, blockade of 5-HT₆ receptors may exert antihyperalgesic effects in neuropathic mice and suggest that systemic 5-HT₆ receptors contribute to the pathophysiology of diabetic neuropathy.

* Presented at the “17th World Congress on Pain”, Boston, USA, 12–16 September 2018.

Introduction
Peripheral neuropathic pain is defined as “pain caused by a lesion or disease of the peripheral somatosensory nervous system” [1, 2]. Traumatic injuries, certain medications such as cytotoxic agents, and systemic diseases such as diabetes mellitus are among the most common causes of peripheral neuropathic pain. Allodynia (pain response to normally non-painful stimulus) and hyperalgesia (augmented pain response to normally painful stimulus) are prominent clinical symptoms associated with neuropathic patients [1, 3, 4]. Current pharmacological treatments for neuropathic pain are typically insufficient at reducing pain symptoms. Even most of the powerful painkillers like morphine and other opioid drugs are inadequate; they are generally effective at higher doses when their adverse effects are seen. In general, antidepressants (e.g., amitriptyline and nortriptyline) and some anticonvulsant drugs (e.g., gabapentin, pregabalin) are recommended for first-line treatment of neuropathic pain; however, it is clear that there is a lack of specific medications that effectively treat this indication [5–7].

Serotonin (5-hydroxytryptamine; 5-HT) is a biogenic amine extensively distributed both in peripheral and central nervous systems. Serotonin contributes to pain modulation by interacting with
different 5-HT receptors [8–10]. Up to now, 7 families of 5-HT receptors (5-HT1–7) have been identified. At the periphery, 5-HT has been shown to exert pronociceptive actions mediated via 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors [10–13]. On the contrary, its spinal effects appear to be more complicated than peripheral effects. 5-HT exerts antinociception at lower doses, whereas it produces pronociceptive effects at higher doses; physiological or pathophysiological status of the animal (e.g., neuropathic pain, inflammation) may also have an impact on the net spinal outcome. It is generally accepted that activation of spinal 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, and 5-HT5A receptors augment nociception when activated [10, 11, 14–17].

Male Balb/c mice (Center of the Laboratory Animals, Trakya University) weighing 20–30 g (n = 8 for each group) were used through these experiments. Animals were housed under a 12–12 h light/dark cycle at a constant temperature of 21 ± 2 °C and had free access to food and water and food. All experiments were carried out between 10:00 and 17:00. The experiments were conducted in strict accordance with “Guide for the Care and Use of Laboratory Animals” published by National Academy of Sciences and the experimental protocols were approved by the ethics committee of Trakya University.

Assessment of antinociception and motor coordination

The nociceptive response was assessed using a standardized cold/hot plate apparatus (Ugo Basile, Comerio, Italy). To conduct the hot plate test, mice were put on a heated surface kept at a temperature of 55 ± 0.1 °C, and response latencies for jumping or paw licking were documented. To prevent tissue damage, a cut-off time of 25 s was set. Test latencies in the hot plate test were converted to the percentage of the maximal possible effect (%MPE) according to the formula: %MPE = [(postdrug latency − baseline latency)/cut-off time − baseline latency] x 100 [26].

The changes in locomotor function after intrathecal injections and in diabetic mice were evaluated using a rotarod apparatus (Commat, Ankara, Turkey). The animals were placed on the apparatus and allowed to explore it during 5 min. Then, mice were placed on the rod rotating at 16 rpm and the performance time until the mice fell from the rod were recorded. A cut-off time of 180 s were set before the assessments [27].

Study design and drugs

Streptozocin (STZ, 150 mg/kg, i.p.), freshly prepared in 0.1 N citrate buffer at pH 4.5, was administered to induce diabetes. The development of diabetes was confirmed 1 week after STZ injection by measurement of tail-vein plasma glucose levels, using IME-DC (Germany) test strips. Mice were considered diabetic when blood glucose levels were at least 200 mg/dl [28]. Thermal thresholds for the hot plate tests were determined on days 5, 9 and 15 after injection of STZ.

To determine the effect of 5-HT6 blockade on thermal hyperalgesia in diabetic mice, different doses of the 5-HT6 antagonist, SB-258585, was given systemically (3, 10, 30 mg/kg, i.p.) and intrathecally (0.01, 0.1, 1 nmol/mouse/i.t.) on day 15 after induction of diabetes. Thermal thresholds for the hot plate tests were investigated before and 30, 60, 90 and 120 min after the injections. Intrathecal injections were made using a widely accepted technique [29]. Additionally, on 7th and 15th days of diabetes, a different group of drug-naïve mice were euthanized and lumbar spinal cord was extracted to examine serotonin and 5-HT6 receptor levels, using LC/MS/MS and Western blot analyses, respectively.

Streptozocin and SB-258585, a 5-HT6 receptor antagonist, were purchased from Sigma-Aldrich (St Louis, MO, USA). SB-258585 was given in 20 % DMSO, 1 % Tween 80, 1 % ethanol, and 78 % saline. Dosages and treatment times of STZ and SB-258585 were selected from previous studies [12, 14, 20, 24].

LC/MS/MS

Frozen mice brain tissue samples were placed in a 1.5 mL polypropylene tube and an extraction solution (%1 formic acid in water, 10 dilution factor) was added. The mixture was vortexed for 1 min and sonicated for 10 min at 45 °C. After sonication the mixture was centrifuged for 5 min, at 9000 rpm. The supernatant was transferred to micro-vial and a 3 μL sample was injected into the LC–MS–MS system for analysis.

Chromatography was performed on an Agilent 1260 infinity LC system (Agilent Technology, Waldbronn, Germany), consisting of quaternary pumps, an autosampler, a vacuum degasser and a column compartment. Separation was on a reversed phase Agilent Zorbax C8 column (3.0 × 150 mm 3,5micron). The mobile phase A consisted of 5 mM ammonium formate and 0.1 % formic acid in water and mobile phase B consisted of %0,1 formic acid in acetonitrile. The flow rate was 0.5 mL min−1 and the column temperatures was 35 °C. The injection volume was 3 μL. The analysis time was 429
11 min for each run. The elution strength usually increases with time, where the gradient starts at 3 %B and rise up 97 %B at 4 min and return 3 %B at 7 min. Mass spectra was obtained with an Agilent 6460 triple quadrupole mass spectrometer equipped with an ElectronSpray ionization (ESI) source, under the control of the MassHaunter software (version 8.05.00). The mass spectrometer was operated in positive-ion, MRM mode. The source temperature of the sheath gas was adjusted to 400 °C and nebulizer rate was 45 psi. The gas flow was 10 L min⁻¹ and the capillary voltage was 2,500 V. Collision energy was 4 V for 160.1 and 30 V for 114.9. Singly charged precursor-product ion transitions were monitored at m/z 177.0 → 160.1 and 177.0 → 114.9 (serotonin). The dwell time was 100 ms for each product ion. The linearity fitted well over the range of 1.0–100 ng mL⁻¹ for 5 different concentration and serotonin LOD and LOQ values are 0.23 ng mL⁻¹ and 0.69 ng mL⁻¹, respectively. The linearity was R² 0.99931. The recoveries were carried out spiked real sample and 88.9 % was obtained for spiked 25 ng mL⁻¹ and 94.2 % for spiked 50 ng mL⁻¹.

Western blot analysis

Western blot analyses were performed as described previously [30, 31] Tissue samples were homogenized in tissue extraction buffer (Santa cruz biotechnology, Finnell Street, Dallas, USA). Total protein concentration was measured using Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA). 20 µL samples were loaded into Nupage Novex 4–12 % Bis-Tris gel (Life Technologies, Invitrogen, Carlsbad, CA, USA) and subjected to vertical electrophoresis. Then, samples were transferred to nitrocellulose membrane using the iblot semi dry blotting system (The iblotTM Gell Transfer Stack, Nitrocellulose, Invitrogen). The membrane was blocked with blocking solution for 30 min to reduce nonspecific binding (Western Breeze Chemiluminescent Western Blot Immunodetection Kit Anti-rabbit; Invitrogen). Afterwards, the membranes were incubated overnight at 4 °C with rabbit polyclonal 5-HT6 antibody (1 : 500 dilution in blocking solution, ab103016) and rabbit polyclonal anti-b-actin antibody (1 : 1000 dilution in blocking solution, Novus Biologicals). The membrane was washed 3 times for 10 min with wash buffer and then incubated with secondary antibody for 30 min (Western Breeze Chemiluminescent Western Blot Immunodetection Kit Anti-rabbit; Invitrogen). Following washing 3 times for 10 min with wash buffer, the protein was visualized by Chemidoc™ MP Imaging System (Universal Hood 3; Bio-Rad, Hercules, CA, USA) with enhanced chemiluminescence substrate (Invitrogen). Immunoblot bands for 5-HT6 and b-actin were quantified using an Image 1.48 v program (Wayne Rasband, National Institutes of Health, Bethesda, MD, USA). The ratio of the density of 5-HT6 to b-actin was calculated for each sample.

Statistical analysis

Data from the hot-plate experiment were evaluated using 2-way analysis of variance (ANOVA), followed by Bonferroni t test. Differences in lumbar dorsal spinal cord 5-HT6 levels and 5-HT6 receptor expression were compared using unpaired t-test. P < 0.05 was considered to be significant for all experiments. All data are expressed as mean ± SEM.

Results

Effects of the 5-HT6 antagonist on thermal hyperalgesia in diabetic mice

Starting from day 5 after induction of diabetes, significant thermal hyperalgesia was observed (2-way ANOVA followed by Bonferroni t test, * P<0.0001, ▶ Fig. 1). On day 15, systemic administration of the 5-HT6 receptor antagonist SB-258585 (3, 10, 30 mg/kg, i.p.) decreased thermal hyperalgesia in diabetic mice (2-way ANOVA followed by Bonferroni t test, ▶ Fig. 2a). 3 mg/kg and 10 mg/kg doses of SB-258585 was effective at 60, 90 and 120th mins, whereas treatment with 30 mg/kg of SB-258585 was efferacious at 30, 60 and 90 mins. SB-258585 (0.01, 0.1, 1 nmol/mouse) had no effect on thermal hyperalgesia when administered intrathecally (2-way ANOVA followed by Bonferroni t test, ▶ Fig. 2b).

Serotonin levels and 5-HT6 receptor expression in the lumbar spinal cord

Spinal serotonin levels did not change in diabetic mice; it is worth mentioning that there was a modest but statistically insignificant increase on day 15 of diabetes (▶ Fig. 3, unpaired t-test). Lumbar spinal 5-HT6 receptor levels were significantly decreased both in 7th (unpaired t-test, * P<0.05) and 15th (unpaired t-test, ** P<0.0001) days after STZ injection (▶ Fig. 4).

Effects of diabetes and intrathecal injections on locomotor activity

Neither diabetes nor i.t. injection had any effect on motor coordination (data not shown).

Discussion

The 5-HT6 receptor is a 7-transmembrane receptor positively coupled to adenylate cyclase. Its activation leads to stimulation of adenylyl cyclase and may produce an excitatory effect on neuronal activity [18]. When released, 5-HT may exert opposite (pronociceptive or antinociceptive) actions mostly depending upon the 5-HT receptor subtype. Although there is little research on the role 5-HT6 receptors in nociception, these receptors appear to mediate pronociceptive effects both at the periphery and the spinal cord.

▶ Fig. 1 Thermal hyperalgesia induced by diabetes. Thermal thresholds for the hot plate tests were determined on days 5, 9 and 15 after streptozocin injection (150 mg/kg, i.p.; 2-way analysis of variance followed by Bonferroni t test, * P<0.0001, vs. control group).

▶ Fig. 2 a) 3 mg/kg and 10 mg/kg doses of SB-258585 was effective at 60, 90 and 120th mins, whereas treatment with 30 mg/kg of SB-258585 was efficacious at 30, 60 and 90 mins. SB-258585 (0.01, 0.1, 1 nmol/mouse) had no effect on thermal hyperalgesia when administered intrathecally (2-way ANOVA followed by Bonferroni t test, ▶ Fig. 2b).
First studies on this subject indicated that pharmacological blockade of 5-HT\textsubscript{6} receptors reduce formalin-induced nociceptive behavior \cite{21}, and that both local peripheral and spinal 5-HT\textsubscript{6} receptors play a pronociceptive role in formalin-induced pain \cite{20}. Then, both peripheral and spinal 5-HT\textsubscript{6} receptors have been shown to play roles in development and maintenance of formalin-induced secondary mechanical allodynia and hyperalgesia \cite{12, 14}. The same group also demonstrated that 5-HT\textsubscript{6} receptors plays part in peripheral pronociceptive but not in spinal antinociceptive effects of fluoxetine, a selective serotonin re-uptake inhibitor \cite{11}.

All of the above-mentioned observations point to the pronociceptive feature of 5-HT\textsubscript{6} receptors both at the periphery and the spinal cord; however, in case of neuropathic pain there are contradictory findings. In the rat spinal nerve ligation model of neuropathic pain, oral administration of compounds that exert potent 5-HT\textsubscript{6} antagonistic effects exhibited stronger potency than gabapentin against cold allodynia, whereas a diminished pain inhibitory effect was observed against mechanical allodynia \cite{22}. Similar oral compounds showing good 5-HT\textsubscript{6} inhibitory activity confirmed these findings displaying anti-allodynic effects in spinal nerve ligated neuropathic rats, but this time mechanical allodynia- alleviating effect was superior to cold alloydina \cite{23}. On the contrary, 5-HT\textsubscript{6} antagonists had no effect on mechanical allodynia in neuropathic rats, but only improved analgesic effects of gabapentinoids, such as gabapentin and pregabalin \cite{25}. Different from these oral administrations, intrathecal injection of 5-HT\textsubscript{6} antagonists decreased tactile allodynia in a dose-dependent manner and 5-HT\textsubscript{6} receptors have been indicated to contribute to maintenance of neuropathic pain in rat \cite{24}. Other than these researches on allodynia, we show for the first time that systemic, but not intrathecal, 5-HT\textsubscript{6} antagonist reduces ther-
nal hyperalgesia in diabetic neuropathy. It should be taken into consideration that peripheral sensitization and central changes contribute to generation and maintenance of different subtypes of allodynia and hyperalgesia with separate mechanisms [3]; moreover, allodynia and hyperalgesia of nerve injury-induced neuropathic animals may not share the same etiology with allodynia and hyperalgesia of STZ-induced diabetic animals [32, 33].

Pain stimuli activates descending serotonergic pathways and in turn release of 5-HT at the spinal cord, which is pivotal for spinal nociceptive transmission [9, 34]. Then, 5-HT can exert facilitatory or inhibitory effects depending basically on the spinal 5-HT receptor subtype and several other reasons. Both nerve injury and diabetes have been shown to increase 5-HT content at the spinal cord, which may account for enhanced pain during these neuropathic pain states [9, 34, 35]. Our results indicating that spinal 5-HT levels do not change during development of hyperalgesia appear to be contradictory to findings of Morgado et al. [35], but they demonstrated higher levels of 5-HT 4 weeks after induction of diabetes; our results also point to a slight increase in spinal 5-HT levels on day 15 which may be an indication of higher 5-HT levels after 4 weeks.

Spinal nerve injury leads to a loss of descending serotonergic neurons [36], whereas it did not modify expression of spinal 5-HT receptors [35]. Unlike nerve injury-induced neuropathy, we found that expression of 5-HT receptors were significantly attenuated in diabetes-induced neuropathy; this can be the reason of inadequate efficacy of the intrathecally administered 5-HT antagonist against thermal hyperalgesia in diabetic rats. In conclusion, our data demonstrate that systemic, but not spinal, blockade of 5-HT receptors attenuate thermal hyperalgesia in diabetic mice and propose that 5-HT receptor antagonists may have utility in the pharmacotherapy of diabetic neuropathy.

Acknowledgement

This work was supported by a grant from Trakya University Research Council (TUBAP-2016/43). We thank K. Duvan-Aydemir for her technical support for behavioral & western blot analysis.

Conflict of Interest

The authors have no conflicts of interest to report.

References

