Anästhesiol Intensivmed Notfallmed Schmerzther 2019; 54(01): 38-48
DOI: 10.1055/a-0756-4651
Topthema
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Diagnostik der Sepsis – Teil 2: Erregeridentifikation

Diagnostic Approaches in Sepsis – Part 2: Pathogen Detection
Daniel C. Richter
,
Alexandra Heininger
,
Karsten Schmidt
,
Thomas Schmoch
,
Michael Bernhard
,
Philipp Mayer
,
Markus A. Weigand
,
Thorsten Brenner
Further Information

Publication History

Publication Date:
08 January 2019 (online)

Zusammenfassung

Im Rahmen der Sepsis und des septischen Schocks spielen, trotz der zunehmenden Verbreitung von neuen molekularbiologischen Verfahren, der kulturelle Erregernachweis und die Resistenztestung weiterhin die entscheidende Rolle in der antimikrobiellen Therapie auf der Intensivstation. Hierbei kann der Erregernachweis für die antimikrobielle Therapie einerseits direkt aus dem Patientenblut, andererseits aber auch aus diversen anderen Probenmaterialien (respiratorische Sekrete, Punktat, intraoperative Abstriche etc.) geführt werden. Ein Nachteil konventioneller kultureller Verfahren im Kontext kritisch kranker Patienten ist die zeitliche Latenz bis zum Erregernachweis bzw. zum Ergebnis der Resistenztestung. Molekularbiologische Verfahren wie Techniken der Erregerdiagnostik und Resistenztestung, die auf Polymerase Chain Reaction (PCR) oder vor allem Next-Generation Sequencing (NGS) basieren, versprechen hier zwar kürzere Umlaufzeiten, sind aber aktuell noch kein klinischer Standard. Trotzdem besitzen diese Verfahren das Potenzial, einen Paradigmenwechsel in der Erregerdiagnostik herbeizuführen.

Die Sepsis ist ein medizinischer Notfall mit weiterhin hoher Sterblichkeit. Die besondere Herausforderung besteht darin, eine adäquate Diagnostik und entsprechende antibiotische Therapie in möglichst kurzer Zeit nach Stellen der Verdachtsdiagnose durchzuführen. Nachdem in Teil 1 des Beitrags die allgemeine Diagnostik und Fokussuche bzw. -sanierung behandelt wurde, fokussiert Teil 2 nun auf die Erregeridentifizierung.

Abstract

Despite the dissemination of innovative, molecular biology-based and commercially available devices for pathogen detection, culture-based methods with susceptibility testing remain the key principles for guiding antimicrobial treatment of patients suffering from sepsis or septic shock on the ICU. Culture-based methods are able to facilitate pathogen detection from a diversity of specimen (respiratory secretion, intraoperatively obtained smears, aspirates, and so forth). However, the latency from obtainment of the specimen up to pathogen detection with susceptibility testing is a major disadvantage of culture-based methods in critical illness. Molecular biology-based methods like Polymerase Chain Reaction (PCR) and especially Next-Generation Sequencing (NGS) based methods promise faster pathogen and resistance detection, but are not used in clinical routine yet. With more clinical trials to come, these innovative diagnostic tools may have the potential to lead to a paradigm shift within the context of pathogen identification in sepsis.

Kernaussagen
  • Grundpfeiler der mikrobiologischen Diagnostik sind weiterhin der kulturelle Erregernachweis und die Resistenztestung. Sie sollte grundsätzlich immer erfolgen – auch bei Nachweis einer invasiven Pilzinfektion. Nachteil ist die Zeitdauer bis zum Vorliegen des Befunds (> 24 h).

  • Es existieren bereits erste innovative Technologien wie PCR-basierte Verfahren oder das NGS, die einen theoretischen Zeitvorteil bieten, bislang in der klinischen Routine jedoch noch nicht fest etabliert sind.

  • Interdisziplinäre, interprofessionelle (klinische Pharmazeuten, Mikrobiologen, Infektiologen) Visiten, wie sie im Rahmen eines infektiologischen Konsildienstes (IDS) oder auch im Rahmen des Antibiotic Stewardships (ABS) verwirklicht werden, erhöhen die Versorgungsqualität bei komplexen Infektionen deutlich und verbessern das Behandlungsergebnis messbar.

  • Die regelmäßige Reevaluation des Infektionsfokus, der antimikrobiellen Therapie auf der Basis der mikrobiologischen Befunde bildet – unabhängig vom Vorhandensein eines ABS-Teams – die Grundlage der Behandlung komplexer Infektionen und septischer Patienten.

 
  • Literatur

  • 1 Rhodes A, Evans LE, Alhazzani W. et al.. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43: 304-377 doi:10.1007/s00134-017-4683-6
  • 2 Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med 2018; 44: 925-928
  • 3 Cockerill F, Wilson J, Vetter E. et al.. Optimal testing parameters for blood cultures. Clin Infect Dis 2004; 38: 1724-1730
  • 4 Fahr AM, Eigner U, Shah PM. Einfluss der verzögerten Transportdauer bei Raumtemperatur auf die Rate der falsch negativen Blutkulturen im BACTEC 9000 Gerät. Impact of delayed entry at room temperature on the rate of false negative blood cultures with the BACTEC 9000 instrument. Laboratoriumsmedizin 2005; 29: 130-135
  • 5 Lee A, Mirrett S, Reller LB. et al.. Detection of bloodstream infections in adults: how many blood cultures are needed?. J Clin Microbiol 2007; 45: 3546-3548
  • 6 Li J, Plorde JJ, Carlson LG. Effects of volume and periodicity on blood cultures. J Clin Microbiol 1994; 32: 2829-2831
  • 7 Long B, Koyfman A. Best clinical practice: Blood culture utility in the emergency department. J Emerg Med 2016; 51: 529-539
  • 8 Kalil AC, Metersky ML, Klompas M. et al.. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63: 575-582 doi:10.1093/cid/ciw504
  • 9 Marschal M, Bachmaier J, Autenrieth I. et al.. Evaluation of the Accelerate Phenoô system for fast identification and antimicrobial susceptibility testing from positive blood culture in Gram-negative bloodstream infection. J Clin Microbiol 2017; 55: 2116-2126
  • 10 Vince A, Lepej SZ, Barsic B. et al.. LightCycler SeptiFast assay as a tool for the rapid diagnosis of sepsis in patients receiving antimicrobial therapy. Crit Care 2008; 12: P8
  • 11 Metzgar D, Frinder MW, Rothman RE. et al.. The IRIDICA BAC BSI assay: rapid, sensitive and culture-independent identification of bacteria and candida in blood. PloS One 2016; 11: e0158186
  • 12 Barlam TF, Cosgrove SE, Abbo LM. et al.. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016; 62: e51-e77
  • 13 Pletz M, Tacconelli E, Welte T. Antibiotic Stewardship 2.0. Internist 2017; 58: 657-665
  • 14 Maechler F. Umgang mit Trägern multiresistenter Gram-negativer Bakterien (MRGN) und Antibiotic Stewardship in deutschen Intensivstationen [Dissertation]. Berlin: Freie Universität Berlin; 2015
  • 15 Beardsley JR, Jones CM, Williamson J. et al.. Pharmacist involvement in a multidisciplinary initiative to reduce sepsis-related mortality. Am J Health Syst Pharm 2016; 73: 143-149
  • 16 Rieg S, Peyerl-Hoffmann G, de With K. et al.. Mortality of S. aureus bacteremia and infectious diseases specialist consultation–a study of 521 patients in Germany. J Infect 2009; 59: 232-239
  • 17 Snyder JW. Blood cultures: The importance of meeting pre-analytical requirements in reducing contamination, optimizing sensitivity of detection, and clinical relevance. Clin Microbiol Newsl 2015; 37: 53-57
  • 18 Baron EJ, Miller JM, Weinstein MP. et al.. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM). Clin Infect Dis 2013; 57: e22-e121 doi:10.1093/cid/cit278
  • 19 Baron EJ, Thomson RB. Specimen Collection, Transport, and Processing: Bacteriology. In: American Society of Microbiology. Manual of clinical Microbiology. 10th ed. Washington D.C.: American Society of Microbiology; 2011: 228-271
  • 20 Baron EJ, Miller JM, Weinstein MP. et al.. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM). Clin Infect Dis 2013; 57: e22-e121
  • 21 Willems E, Smismans A, Cartuyvels R. et al.. The preanalytical optimization of blood cultures: a review and the clinical importance of benchmarking in 5 Belgian hospitals. Diagn Microbiol Infect Dis 2012; 73: 1-8
  • 22 Hansen S, Schwab F, Behnke M. et al.. National influences on catheter-associated bloodstream infection rates: practices among national surveillance networks participating in the European HELICS project. J Hosp Infect 2009; 71: 66-73 doi:10.1016/j.jhin.2008.07.014
  • 23 Karch A, Castell S, Schwab F. et al.. Proposing an empirically justified reference threshold for blood culture sampling rates in intensive care units. J Clin Microbiol 2015; 53: 648-652
  • 24 Kumpf O, Braun JP, Brinkmann A. et al.. Quality indicators in intensive care medicine for Germany – third edition 2017. Ger Med Sci 2017; DOI: 10.3205/000251.
  • 25 CCCT Group. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 2006; 2006: 2619-2630
  • 26 Fagon JY, Chastre J, Wolff M. et al.. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumoniaa randomized trial. Ann Intern Med 2000; 132: 621-630
  • 27 Shorr AF, Sherner JH, Jackson WL. et al.. Invasive approaches to the diagnosis of ventilator-associated pneumonia: a meta-analysis. Crit Care Med 2005; 33: 46-53
  • 28 Mandell LA, Wunderink RG, Anzueto A. et al.. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44: 27-72
  • 29 Ewig S, Höffken G, Kern W. et al.. Behandlung von erwachsenen Patienten mit ambulant erworbener Pneumonie und Prävention – Update 2016. Pneumologie 2016; 70: 151-200
  • 30 Dalhoff K, Abele-Horn M, Andreas S. et al.. Epidemiologie, Diagnostik und Therapie erwachsener Patienten mit nosokomialer Pneumonie. Pneumologie 2012; 66: 707-765
  • 31 Du Rand I, Blaikley J, Booton R. et al.. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: accredited by NICE. Thorax 2013; 68: i1-i44
  • 32 Steinberg KP, Mitchell DR, Maunder RJ. et al.. Safety of bronchoalveolar lavage in patients with adult respiratory distress syndrome. Am Rev Respir Dis 1993; 148 doi:10.1164/ajrccm/148.3.556
  • 33 Kalchiem-Dekel O, Shanholtz CB, Jeudy J. et al.. Feasibility, safety, and utility of bronchoscopy in patients with ARDS while in the prone position. Crit Care 2018; 22: 54 doi:10.1186/s13054-018-1983-3
  • 34 Guarracino F, Bertini P, Bortolotti U. et al.. Flexible bronchoscopy during mechanical ventilation in the prone position to treat acute lung injury. Rev Port Pneumol 2013; 19: 42-44 doi:10.1016/j.rppneu.2012.06.005
  • 35 Vélez L, Correa LT, Maya MA. et al.. Diagnostic accuracy of bronchoalveolar lavage samples in immunosuppressed patients with suspected pneumonia: analysis of a protocol. Respir Med 2007; 101: 2160-2167
  • 36 Luna CM, Bledel I, Raimondi A. The role of surveillance cultures in guiding ventilator-associated pneumonia therapy. Curr Op Infect Dis 2014; 27: 184-193
  • 37 Luna CM, Sarquis S, Niederman MS. et al.. Is a strategy based on routine endotracheal cultures the best way to prescribe antibiotics in ventilator-associated pneumonia?. Chest J 2013; 144: 63-71
  • 38 Michel F, Franceschini B, Berger P. et al.. Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: a role for routine endotracheal aspirate cultures. Chest J 2005; 127: 589-597
  • 39 Jain S, Williams DJ, Arnold SR. et al.. Community-acquired pneumonia requiring hospitalization among US children. N Engl J Med 2015; 372: 835-845
  • 40 Choi SH, Hong SB, Ko GB. et al.. Viral infection in patients with severe pneumonia requiring intensive care unit admission. Am J Respir Crit Care Med 2012; 186: 325-332
  • 41 Wunderink RG. Other community respiratory viruses. Clin Chest Med 2017; 38: 37-43
  • 42 Martin-Loeches I, Schultz MJ, Vincent JL. et al.. Increased incidence of co-infection in critically ill patients with influenza. Intensive Care Med 2017; 43: 48-58
  • 43 Voiriot G, Visseaux B, Cohen J. et al.. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia. Crit Care 2016; 20: 375
  • 44 Al-Omari A, Aljamaan F, Alhazzani W. et al.. Cytomegalovirus infection in immunocompetent critically ill adults: literature review. Ann Intensive Care 2016; 6: 110
  • 45 Coisel Y, Bousbia S, Forel JM. et al.. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS One 2012; 7: e51340
  • 46 Kalil AC, Florescu DF. Is cytomegalovirus reactivation increasing the mortality of patients with severe sepsis?. Crit Care 2011; 15: 138
  • 47 Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med 2009; 37: 2350-2358
  • 48 Heininger A, Haeberle H, Fischer I. et al.. Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit Care 2011; 15: R77
  • 49 Papazian L, Hraiech S, Lehingue S. et al.. Cytomegalovirus reactivation in ICU patients. Intensive Care Med 2016; 42: 28-37
  • 50 Cook CH, Zhang Y, Sedmak DD. et al.. Pulmonary cytomegalovirus reactivation causes pathology in immunocompetent mice. Crit Care Med 2006; 34: 842
  • 51 Forel JM, Martin-Loeches I, Luyt CE. Treating HSV and CMV reactivations in critically ill patients who are not immunocompromised: pro. Intensive Care Med 2014; 40: 1945-1949
  • 52 Chanques G, Jaber S. Treating HSV and CMV reactivations in critically ill patients who are not immunocompromised: con. Intensive Care Med 2014; 40: 1950-1953
  • 53 Limaye AP, Stapleton RD, Peng L. et al.. Effect of ganciclovir on il-6 levels among cytomegalovirus-seropositive adults with critical illness: a randomized clinical trial. JAMA 2017; 318: 731-740
  • 54 Koulenti D, Garnacho-Montero J, Blot S. Approach to invasive pulmonary aspergillosis in critically ill patients. Curr Op Infect Dis 2014; 27: 174-183
  • 55 Hage CA, Knox KS, Davis TE. et al.. Antigen detection in bronchoalveolar lavage fluid for diagnosis of fungal pneumonia. Curr Op Pulmon Med 2011; 17: 167-171
  • 56 Meersseman W, Lagrou K, Maertens J. et al.. Galactomannan in bronchoalveolar lavage fluid: a tool for diagnosing aspergillosis in intensive care unit patients. Am J Respir Crit Care Med 2008; 177: 27-34
  • 57 Patterson TF, Thompson III GR, Denning DW. et al.. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63: e1-e60
  • 58 Schroeder M, Simon M, Katchanov J. et al.. Does galactomannan testing increase diagnostic accuracy for IPA in the ICU? A prospective observational study. Crit Care 2016; 20: 139
  • 59 He H, Ding L, Sun B. et al.. Role of galactomannan determinations in bronchoalveolar lavage fluid samples from critically ill patients with chronic obstructive pulmonary disease for the diagnosis of invasive pulmonary aspergillosis: a prospective study. Crit Care 2012; 16: R138
  • 60 Skvarc M, Stubljar D, Rogina P. et al.. Non-culture-based methods to diagnose bloodstream infection: Does it work?. Eur J Microbiol Immunol (Bp) 2013; 3: 97-104 doi:10.1556/EuJMI.3.2013.2.2
  • 61 Loonen AJ, de Jager CP, Tosserams J. et al.. Biomarkers and molecular analysis to improve bloodstream infection diagnostics in an emergency care unit. PloS One 2014; 9: e87315
  • 62 Bacconi A, Richmond GS, Baroldi MA. et al.. Improved sensitivity for molecular detection of bacteria and Candida in blood. J Clin Microbiol 2014; 52: 3164-3174
  • 63 Kaleta EJ, Clark AE, Wysocki VH. et al.. Comparative analysis of PCR-electrospray ionization/mass spectrometry (MS) and MALDI-TOF/MS for the identification of bacteria and yeast from positive blood culture bottles. Clin Chem 2011; 57: 1057-1067 doi:10.1373/clinchem.2011.161968
  • 64 Vincent JL, Brealey D, Libert N. et al.. Rapid Diagnosis of Infection in the Critically Ill, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections. Crit Care Med 2015; 43: 2283-2291 doi:10.1097/CCM.0000000000001249
  • 65 Chang SS, Hsieh WH, Liu TS. et al.. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis – a systemic review and meta-analysis. PloS One 2013; 8: e62323
  • 66 Pancholi P, Carroll KC, Buchan BW. et al.. Multicenter Evaluation of the Accelerate PhenoTest BC Kit for Rapid Identification and Phenotypic Antimicrobial Susceptibility Testing Using Morphokinetic Cellular Analysis. J Clin Microbiol 2018; 56: pii:e01329-17 doi:10.1128/JCM.01329-17
  • 67 Grumaz S, Stevens P, Grumaz C. et al.. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med 2016; 8: 1
  • 68 Brenner T, Decker SO, Grumaz S. et al.. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): Study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine 2018; 97: e9868