The Effects of Melatonin Supplementation on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Authors
Amin Doosti-Irani1, 2, Vahidreza Ostadmohammadi3, Naghmeh Mirhosseini4, Mohammad Ali Mansournia5, Russel J. Reiter6, Maryam Kashanian7, Maryam Rahimi7, Maryamalsadat Razavi8, Zatollah Asemi3

Affiliations
1 Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
2 Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
3 Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
4 School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
5 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
6 Department of Cellular and Structural Biology, UT Health San Antonio, TX, USA
7 Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
8 Department of Gynecology and Obstetrics, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran

Key words
melatonin, glycemic control, insulin resistance, meta-analysis

ABSTRACT
This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to clarify the effect of melatonin supplementation on glycemic control. Databases including PubMed, MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials were searched until July 30th, 2018. Two reviewers independently assessed study eligibility, extracted data, and evaluated the risk of bias for included trials. Heterogeneity among included studies was assessed using Cochran’s Q test and I-square (I²) statistic. Data were pooled using random-effect models and standardized mean difference (SMD) was considered as the overall effect size. Twelve trials out of 292 selected reports were identified eligible to be included in current meta-analysis. The pooled findings indicated that melatonin supplementation significantly reduced fasting glucose (SMD = −6.34; 95% CI, −12.28, −0.40; p = 0.04; I²: 65.0) and increased the quantitative insulin sensitivity check index (QUICKI) (SMD = 0.01; 95% CI, 0.00, 0.02; p = 0.01; I²: 0.0). However, melatonin administration did not significantly influence insulin levels (SMD = −1.03; 95% CI, −3.82, 1.77; p = 0.47; I²: 53), homeostasis model assessment of insulin resistance (HOMA-IR) (SMD = −0.34; 95% CI, −1.25, 0.58; p = 0.37; I²: 0.37) or HbA1c levels (SMD = −0.22; 95% CI, −0.47, 0.03; p = 0.08; I²: 0.0). In summary, the current meta-analysis showed a promising effect of melatonin supplementation on glycemic control through reducing fasting glucose and increasing QUICKI, yet additional prospective studies are recommended, using higher supplementation doses and longer intervention period, to confirm the impact of melatonin on insulin levels, HOMA-IR and HbA1c.
Introduction

Diabetes mellitus is a chronic, life-threatening metabolic disorder, which is or will soon become a massive economic burden for many communities [1]. The global prevalence of diabetes among adults (aged 20–79 years) was 6.4 % in 2010, affecting 285 million adults. Unfortunately, this will increase to 7.7 %, involving 439 million adults, by 2030. Between 2010 and 2030, there will be a 69 % increase in the number of adults suffering from diabetes in developing countries and a 20 % increase in developed countries [1]. Type 2 diabetes mellitus (T2DM) has been significantly associated with the development of microvascular and macrovascular complications [2–4]. Studies have also shown that T2DM is associated with increased oxidative stress occurring as a consequence of hyperglycemia, hyperinsulinemia, increased insulin resistance, reduced insulin sensitivity, and dyslipidemia [5–8].

Melatonin is an endogenous indole amine, secreted by the pineal gland, which facilitates physiologic timings based on circadian patterns [9]. Previously, the beneficial effects of melatonin on metabolic profiles and inhibitory actions on adrenocorticotropic hormone responses were documented [10–13]. In addition, animal studies and non-randomized human trials have proposed the possible impact of melatonin administration on improving glycemic control, insulin resistance, hypertension, and dyslipidemia [14, 15]. Melatonin intake has been shown to regulate blood glucose levels through its ability to bind directly to melatonin receptors on hepatocytes [16] and regulate the uptake of glucose in adipocytes, by modulating the expression of the glucose uptake transporter [17]. Moreover, melatonin has been reported to stimulate the secretion of glucagon, another hormone that is important in glucose and insulin metabolism [18]. However, few randomized controlled trials (RCTs) have evaluated the effects of melatonin on glycemic control, and the published findings are inconsistent. In a study conducted by Rezvanfar et al. [19], melatonin administration at a dosage of 6 mg for 12 weeks decreased fasting glucose in diabetic patients. The same research group has recently found that melatonin administration at a dosage of 10 mg/day for 12 weeks improved glycemic control in diabetic patients suffering from coronary heart disease (CHD) [20]. Moreover, a 12-week trial using melatonin showed significant improved insulin sensitivity and the inflammatory state in obese patients with Acanthosis Nigricans [21]. There are, however, results as well that, for example, 5 mg/day melatonin supplementation for 2 months did not affect fasting glucose in patients diagnosed with metabolic syndrome (MetS) [15]. Differences in study design, study population characteristics, the dosage of melatonin used, and the duration of intervention might explain the discrepancies among the findings published to date.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>FPG</td>
<td>Fasting plasma glucose</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Hemoglobin A1c</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostasis model of assessment-estimated insulin resistance</td>
</tr>
<tr>
<td>NASH</td>
<td>Nonalcoholic steatohepatitis</td>
</tr>
<tr>
<td>QUICKI</td>
<td>Quantitative insulin-sensitivity check index</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 diabetes mellitus</td>
</tr>
</tbody>
</table>

Materials and Methods

Search and studies selection strategies

The scientific international databases, including Cochrane Library, EMBASE, PubMed, and Web of Science were searched for relevant studies published until July 30th, 2018. A search strategy was developed using the following MeSH and text keywords; intervention (“melatonin” AND “supplementation” OR “intake”), and outcomes (“fasting glucose” OR “FPG” OR “insulin” OR “homeostasis model of assessment insulin resistance (HOMA-IR)” OR “HbA1c” OR “quantitative insulin sensitivity check index (QUICKI)”).

Inclusion and exclusion criteria

RCTs with the following criteria were included in meta-analysis: human trial with either parallel or cross-over design, data for the effect of melatonin on glycemic control extracted from RCTs (including mean changes of glucose, insulin, HOMA-IR, HbA1c, and QUICKI with standard deviations (SDs) and related 95 % confidence intervals (CIs) for the both intervention and placebo groups). Other studies such as animal experiments, in vitro studies, case reports, observational studies, investigations without control group, and studies that did not achieve the least quality score were excluded from this meta-analysis.

Data extraction and quality assessment

Two independent authors (VO and NM) screened the retrieved articles based on the eligibility criteria. In the first step the title and abstract of studies were reviewed. Then, the full-text of relevant studies was retrieved and assessed to ascertain the suitability of a study for the meta-analysis. Any disagreement was resolved through the judgment of the third author (ZA).

The following data were extracted from selected studies: the first authors’ name, year of publication, study location, age, study design, sample size, dose of intervention, duration of study, type of disease, the mean and standard deviation (SD) for fasting glucose, insulin, HOMA-IR, HbA1c, and QUICKI in each intervention group. The quality of the selected RCTs was assessed by same independent authors using the Cochrane Collaboration risk of bias tool based on the following criteria: “randomization generation, allocation concealment, blinding of participants and outcome assessors, incomplete outcome data, and selective outcome reporting, and other sources of bias”.

Data synthesis and statistical analysis

The effects of melatonin supplementation on the changes of the following outcomes were calculated: 1) fasting glucose, 2) insulin, 3) HOMA-IR, 4) HbA1c, and 5) QUICKI. The mean differences (MDs) with 95 % CI were used for pooling data to determine effect sizes. The change score approach was used to calculate the effect size of melatonin supplementation on the identified outcome. The random-effect model was used to report the pooled effect sizes using 95 % confidence interval (CI).
Heterogeneity and publication bias

Heterogeneity across included studies was assessed using Cochran’s Q test (with significant p-value lower than 0.1) and I-square test (I^2 greater than 50 percent showing significant heterogeneity). The funnel plot, as well as the Beggs’s and Egger’s regression tests were used to determine the publication bias. Both STATA 11.0 (Stata Corp., College Station, TX, USA) and Review Manager 5.3 (Cochrane Collaboration, Oxford, UK) were applied for data analysis.

Results

The step by step flowchart for identification and selection is illustrated in Fig. 1. Finally, 12 RCTs out of 292 articles were selected to be included in meta-analysis. Ten trials had measured the effects of melatonin on fasting glucose, 4 on insulin, 3 on HOMA-IR, 3 on HbA1c and 2 on QUICKI. The sample size of included RCTs in this meta-analysis varied from 20 to 128 participants. Duration of intervention ranged from 30 days to 24 weeks. Selected RCTs were published between 2005 and 2018. Dosage of melatonin supplements varied from 3 to 10 mg/day. The detailed characteristics of selected RCTs are summarized in Table 1.

Main outcomes

Forest plots reporting the effect sizes of primary RCTs on glycemic control parameters are indicated in Fig. 2 1–5. The pooled findings using random-effect models indicated that melatonin supplementation significantly reduced fasting glucose (MD = –6.34; 95 % CI, –12.28, –0.40; p = 0.04; I^2: 65.0) and increased QUICKI (MD = 0.01; 95 % CI, 0.00, 0.02; p = 0.01; I^2: 0.0). However, melatonin administration did not influence insulin levels (MD = –1.03; 95 % CI, –3.82, 1.77; p = 0.47; I^2: 0.53), HOMA-IR (MD = –0.34; 95 % CI, –1.25, 0.58; p = 0.37; I^2: 0.37) and HbA1c (MD = –0.22; 95 % CI, –0.47, 0.03; p = 0.08; I^2: 0.0).
Table 1 Characteristics of included studies.

<table>
<thead>
<tr>
<th>Authors [Ref]</th>
<th>Publication year</th>
<th>Sample size (control/intervention)</th>
<th>Country/population</th>
<th>Intervention (name and daily dose)</th>
<th>Duration</th>
<th>Presented data</th>
<th>Age (years) (control, intervention)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agahi et al. [38]</td>
<td>2017</td>
<td>50/50 Iran/patients treated with the second-generation antipsychotics</td>
<td>3 mg/d melatonin</td>
<td>8 weeks</td>
<td>FPG</td>
<td>37.46 ± 12.42, 37.4 ± 10.3</td>
<td>Decreased FPG</td>
<td></td>
</tr>
<tr>
<td>D’Anna et al. [29]</td>
<td>2016</td>
<td>16/16 Italy/women during menopausal transition</td>
<td>3 mg/d melatonin + 2 g/d myo-inositol</td>
<td>24 weeks</td>
<td>Insulin</td>
<td>48.7 ± 1.5, 49.1 ± 1.7</td>
<td>No effect</td>
<td></td>
</tr>
<tr>
<td>Ghaderi et al. [39]</td>
<td>2018</td>
<td>28/26 Iran/patients under methadone maintenance treatment</td>
<td>10 mg/d melatonin</td>
<td>12 weeks</td>
<td>FPG, Insulin, HOMA-IR, QUICKI</td>
<td>42.7 ± 9.9, 42.5 ± 8.0</td>
<td>Decreased insulin and HOMA-IR, Increased QUICKI</td>
<td></td>
</tr>
<tr>
<td>Goyal et al. [40]</td>
<td>2014</td>
<td>37/37 USA/metabolic syndrome</td>
<td>8 mg/d melatonin</td>
<td>10 weeks</td>
<td>FPG</td>
<td>57.6 ± 10.1, 62.7 ± 9.6</td>
<td>No effect</td>
<td></td>
</tr>
<tr>
<td>Gonciarz et al. [41]</td>
<td>2012</td>
<td>12/30 Poland/NASH</td>
<td>10 mg/d melatonin</td>
<td>24 weeks</td>
<td>FPG</td>
<td>40.8 ± 3.6, 41.5 ± 4</td>
<td>Decreased FPG</td>
<td></td>
</tr>
<tr>
<td>Hussain et al. [42]</td>
<td>2006</td>
<td>15/18 Iraq/T2DM</td>
<td>10 mg/d melatonin + other nutrients</td>
<td>30 days</td>
<td>FPG, HbA1c</td>
<td>49.1 ± 6</td>
<td>Decreased FPG</td>
<td></td>
</tr>
<tr>
<td>Hussain et al. [42]</td>
<td>2005</td>
<td>15/18 Iraq/T2DM</td>
<td>10 mg/d melatonin + other nutrients</td>
<td>90 days</td>
<td>FPG, HbA1c</td>
<td>49.1 ± 6</td>
<td>Decreased FPG</td>
<td></td>
</tr>
<tr>
<td>Modabbernia et al. [43]</td>
<td>2014</td>
<td>18/18 Iran/schizophrenia</td>
<td>3 mg/d melatonin</td>
<td>8 weeks</td>
<td>FPG, Insulin, HOMA-IR</td>
<td>32.8 ± 8.2, 32.7 ± 7.3</td>
<td>No effect</td>
<td></td>
</tr>
<tr>
<td>Rezvanfar et al. [44]</td>
<td>2016</td>
<td>64/64 Iran/T2DM</td>
<td>6 mg/d melatonin</td>
<td>12 weeks</td>
<td>FPG, HbA1c</td>
<td>52 ± 8</td>
<td>No effect</td>
<td></td>
</tr>
<tr>
<td>Romo-Nava et al. [45]</td>
<td>2013</td>
<td>11/5 Mexico/bipolar disorder and schizophrenia (high risk)</td>
<td>5 mg/d melatonin</td>
<td>8 weeks</td>
<td>FPG</td>
<td>28.6 ± 9, 30.6 ± 7.5</td>
<td>No effect</td>
<td></td>
</tr>
<tr>
<td>Romo-Nava et al. [45]</td>
<td>2013</td>
<td>13/15 Mexico/bipolar disorder and schizophrenia (medium risk)</td>
<td>5 mg/d melatonin</td>
<td>8 weeks</td>
<td>FPG</td>
<td>28.6 ± 9, 30.6 ± 7.5</td>
<td>No effect</td>
<td></td>
</tr>
<tr>
<td>Raygan et al. [20]</td>
<td>2017</td>
<td>30/30 Iran/T2DM with CHD</td>
<td>10 mg/d melatonin</td>
<td>12 weeks</td>
<td>FPG, Insulin, HOMA-IR, QUICKI</td>
<td>65.3 ± 10.1, 67.7 ± 11.4</td>
<td>Decreased FPG, insulin and HOMA-IR, increased QUICKI</td>
<td></td>
</tr>
</tbody>
</table>

For abbreviations: see text.
Fig 2 1–5: Meta-analysis lipid profiles mean differences estimates for 1 fasting glucose, 2 for insulin, 3 for homeostasis model assessment of insulin resistance, 4 for HbA1c, 5 and for quantitative insulin sensitivity check index in melatonin and placebo groups.
Publication bias
Funnel plots demonstrating publication bias are illustrated in Fig. 3. Results of Begg’s (p = 0.02) and Egger’s (p = 0.008) tests for the effects of melatonin supplementation on fasting glucose were statistically significant.

Discussion
To our best knowledge, this is the first meta-analysis of RCTs evaluating the effect of melatonin supplementation on glycemic control. The current meta-analysis showed the beneficial impact of melatonin supplementation on glycemic control including a significant reduction in fasting glucose and an increase in QUICKI, though melatonin did not affect insulin levels, HOMA-IR, and HbA1c.

Existing evidence are promising regarding the impact of melatonin on glycemic control. In healthy individuals, glucose homeostasis is tightly controlled via a complex pathway of regulatory mechanisms involving multiple organs and tissues. Normal glucose balance is usually impaired due to a sustained reduction in both pancreatic beta-cell function and insulin secretion [22]. In animal models, melatonin has been shown to regulate circulating serum glucose levels through its ability to bind directly to melatonin receptors on hepatocytes [16] as well as to regulate the uptake of glucose by adipocytes, through modulating the expression of the glucose uptake transporter [17]. Abnormal nocturnal melatonin profiles have been reported in diabetic patients, especially for those suffering from diabetic neuropathy [23]. Low melatonin secretion has also been independently correlated with a higher risk of developing T2DM; an association that further establishes the roles of melatonin in glycemic control and insulin sensitivity [24]. There is a new evidence suggesting a relationship between melatonin production disturbances and impairment of insulin, glucose and lipid metabolism [25]; and antioxidant capacity [26]. Results from both in vivo and in vitro studies have shown that in patients diagnosed with MetS, night-time melatonin level is significantly correlated to nighttime insulin concentrations [27]. Moreover, melatonin stimulates the secretion of glucagon, which is the second hormone important in glucose metabolism [18]. In a meta-analysis, we have previously reported that melatonin significantly decreased inflammatory markers including CRP and IL-6, but not TNF-α levels in patients with MetS and related disorders [28]. However, some of the RCTs that assessed the effects of melatonin supplementation on glycemic control have yielded inconsistent results. Rezvanfar et al. [19] found that melatonin administration at a dosage of 6 mg to type 2 diabetic patients for 12 weeks decreased fasting glucose levels. In addition, combined myo-inositol and melatonin supplementation for 6 months significantly improved glucose metabolism among women experiencing the menopausal transition [29]. Moreover, a 12-week supplementation of melatonin improved insulin sensitivity and the inflammatory status of obese patients with Acanthosis Nigricans [21]. Controversial findings also exist; as an example, 5 mg/day melatonin supplementation for 2 months did not affect fasting glucose levels in patients with MetS [15]. Differences in study design, study population characteristics, the dosage of melatonin used and the duration of intervention might explain the discrepancies among existing evidence.

Melatonin receptors (MT1 and MT2) are present in both animal [30, 31] and human [32] pancreatic islets. In addition, an increase in the expression of MT1 and MT2 receptors is reported in the pancreas of diabetic rats and in subjects with T2DM [33]. Associations between single nucleotide polymorphisms situated close to (or within) the gene encoding MT2 (MTNR1B), and an increased risk of developing T2DM [34], diminished B-cell function [35] and impaired glycemic control [36] have been reported in different cohorts from a variety of different ethnicities. The inhibitory effects of melatonin intake on elevated fasting glucose may be mediated through the function of 2 G-protein-coupled receptors. These receptors are expressed in both the beta cells of the pancreatic islets and the adipocytes, playing important roles in the regulation of blood glucose [37].

This meta-analysis has some limitations. There were few eligible RCTs including a modest number of participants. Various doses of melatonin were administered for intervention in the included studies. The results of publication bias were statistically significant for the effects of melatonin supplementation on FPG. Thus, additional RCTs are required to obtain the necessary pooled effect size. In addition, due to low number of RCTs included for the effect of melatonin supplementation on insulin, HOMA-IR, HbA1c and QUICKI, we could not assess the publication bias for these outcomes.

Conclusions
In summary, the current meta-analysis showed a potentially beneficial of melatonin supplementation on improving glycemic control through reducing fasting glucose and increasing QUICKI. However, additional prospective studies are recommended using higher supplementation doses and longer intervention period to determine the impact of melatonin on insulin levels, HOMA-IR, and HbA1c.

Author Contributions
ZA, AD-I, VO, NM, M-AM, MK, MR, and MR contributed to the conception, design, statistical analysis, and drafting of the manuscript. RJR reviewed the manuscript and offered critical comments.
Funding
The research grant provided by Research Deputy of Kashan University of Medical Sciences (KAUMS).

Conflict of Interest
The authors declare that they have no conflict of interest.

References

