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Introduction
After studying thyroid autoimmunity for more than 40 years, we wish 
to present a personal perspective of how this field has evolved, some 
selected aspects of our contribution thereto, and where it is headed. 
At the outset we emphasize that this perspective is focused, not com-
prehensive, and that we present points of view with which some may 
disagree. Contributions by investigators too numerous to mention 
have resulted in advances in our knowledge comparable to the 
Wright brothers viewing a modern aircraft. Autoimmune thyroid dis-
eases can be readily treated, yet cures remain elusive. Before form-
ing a team, not knowing each other despite being close neighbors 
in South Africa where we grew up, we coincidentally began studying 

thyroid autoimmunity on different continents after failing to find po-
sitions in our initial fields of choice. Like other aspects in life, initial 
disappointments proved highly positive.

The great advantage to studying the pathogenesis and potential 
treatment of thyroid autoimmunity is the unequivocal identification 
and availability of a limited number of disease-associated, thyroid 
specific antigens. In the early 1970’s, the clinical aspects of Grave’s 
disease and Hashimoto’s thyroiditis were well known and therapies 
(apart from ophthalmopathy) essentially unchanged. The major re-
search advances had occurred two decades earlier, in 1956, with the 
seminal discoveries of autoantibodies to thyroglobulin (Tg) [1, 2] and 
the microsomal antigen [3] in Hashimoto’s thyroiditis, and a long 
acting thyroid stimulator (LATS) in Graves’ disease [4], later found to 
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ABStR Act

After investigating thyroid autoimmunity for more than  
40 years, we present a personal perspective on the field. Despite 
effective therapies for Graves’ hyperthyroidism and Hashimoto’s 
thyroiditis, cures are elusive. Novel forms of therapy are being 
developed, such as small molecule inhibitors of the TSH recep-
tor (TSHR), but cure will require immunotherapy. This goal 
requires advances in understanding the pathogenesis of thy-
roid autoimmunity, the ‘keys’ for which are the thyroid antigens 
themselves. Presently, however, greater investigative focus is 
on non-thyroid specific immune cell types and molecules. Thy-
roid autoantigens are the drivers of the autoimmune response, 
a prime example being the TSHR. In our view, the TSHR is the 
culprit as well as the victim in Graves’ disease because of its 
unique structure. Unlike the closely related gonadotropin re-
ceptors, the TSHR cleaves into subunits and there is strong 
evidence that its shed extracellular A-subunit, not the holore-
ceptor, is the major antigen driving pathogenic thyroid stimu-
lating autoantibodies (TSAb) development. There is no Graves’ 
disease of the gonads. Studies of potential antigen-specific 
immunotherapies require an animal model. Such models have 
been developed in which TSAb can be induced or, more impor-
tantly, arise spontaneously. Not appreciated until recently by 
thyroid investigators is that B cell surface autoantibodies are 
highly efficient ‘antigen receptors’ and the epitope to which an 
autoantibody binds influences antigen processing and which 
peptide is presented to T cells. These animal models and re-
combinant human autoantibodies cloned from Graves’ and 
Hashimoto’s B cells (plasma cells) are available for study by 
future generations.
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be an IgG [5, 6]. These findings were fundamental in introducing the 
concept of autoimmune diseases in general, with the importance of 
autoantibodies followed later by the role of T cells. For thyroid-spe-
cific autoimmunity, the discovery of autoantibodies and the devel-
opment of clinical assays for their detection introduced a new dimen-
sion in studying the pathogenesis of these diseases, with subsequent 
advances reviewed in the following sections.

Immunological journals are replete with studies on other auto-
immune diseases (both organ-specific and systemic) describing as-
sociations with varying permutations of the ever-expanding com-
pendium of cytokines, chemokines and different immune cell 
types, including T and B cell variants and their panoply of receptors 
and cell surface proteins (“CD-x”). Only rarely do such studies in-
volve an autoantigen unequivocally involved in disease pathogen-
esis, such as in myasthenia gravis. Even in type I diabetes mellitus, 
there is debate as to which of a variety of antigens is the initial tar-
get in disease pathogenesis as opposed to being secondary mark-
ers of organ damage.

Rather than delving into the immunological molecule or cell 
type “du jour”-, our approach has primarily been to take advantage 
of the ‘gift’ provided by disease associated thyroid antigens. To par-
aphrase the campaign statement by President Bill Clinton on the 
economy: “It’s the autoantigen, stupid”. Thyroid autoantigens are 
crucial keys for studying thyroid autoimmunity. Autoimmune re-
sponses require the appropriate interactions between T cells, B cells 
and antigen presenting cells and the location of these cells in lym-
phoid organs including lymph nodes and (for thyroid autoimmun-
ity) the thyroid itself [7]. However, the drivers of thyroid autoim-
munity are the autoantigens. The availability of recombinant (TPO) 
and the TSH receptor (TSHR) for the past 20 years, made possible 
by the molecular cloning of their genes (reviewed in [8, 9]), has 
been critical for studies on the pathogenesis of thyroid autoimmun-
ity, including the loss of immunological tolerance to these autoan-
tigens (reviewed in [10]), as well as the development of improved 
diagnostic assays and the search for potential immune-therapeu-
tic approaches.

The TSH Receptor in Graves’ Disease
It may not be appreciated by new generations of investigators that 
the concept of hormone action being mediated by binding to a cog-
nate receptor was introduced with the TSH receptor (TSHR) [11]. This 
fundamental discovery led to the development of progressively more 
convenient, sensitive and specific assays for TSHR autoantibodies in 
Graves’ disease. Besides their clinical value, these assays are essen-
tial for studies on the pathogenesis of thyroid autoimmunity.

a) TSHR autoantibody assays
Detection of thyroid stimulators (TSH, LATS, TSAb) by laborious as-
says involving release of radioiodine from prelabeled rodent thy-
roids was supplanted by two types of new assays, developed in the 
1970s: (i) a bioassay using cultured thyroid cell monolayers for 
measuring TSHR activation [12] and, (ii) a TSH binding inhibition 
(TBI) assay involving competition by Graves’ IgG for radiolabeled 
TSH binding to thyroid membranes [13]. The past 45 years have 
seen numerous modifications of these assays and investigation into 
the value of their clinical use, with a vast literature beyond the 

scope of this article. However, we can comment on the present 
state of these assays.

Competing assay manufacturers target clinicians and laborato-
ries with advertisements claiming superiority, often with mislead-
ing or erroneous assertions regarding their ability to measure func-
tional TSAb and the potential influence of TSH blocking antibodies 
(TBAb; sometimes incorrectly termed ‘thyroid’ blocking antibod-
ies). In particular TBI assays, including the substitution for TSH of a 
monoclonal human TSAb [14], are criticized by manufacturers of 
bio- [15] and bridge assays [16] for using the wild-type TSHR, not 
a modified, chimeric TSHR, which supposedly avoids the confound-
ing influence of TBAb in detecting TSAb in a patient’s serum. Fol-
lowing a report 20 years ago [17], the generally accepted mantra 
has arisen that “TSAb bind to the N-terminus and TBAb bind to the 
C-terminus” of the TSHR extracellular domain (ECD). Based on this 
concept, replacing the TSHR C-terminal TBAb epitope with the 
equivalent region of the related, luteinizing hormone receptor 
would generate a chimeric receptor recognized only by TSAb and 
not by TBAb. Unfortunately, this concept is only partially correct. 
Unlike TSAb, which universally recognize the TSHR N-terminus (for 
example [18–20], TBAb epitopes are not localized, but are widely 
distributed with many occurring at the TSHR N-terminus besides 
the C-terminus [19, 21, 22]. Indeed, the atomic structure of a mon-
oclonal human TBAb (K1-70) in complex with the TSHR reveals 
binding entirely to the receptor N-terminus [23] and very similar 
to that of a monoclonal human TSAb (M22) [20]. Finally, the chi-
meric TSHR used in the commercial bioassay and bridge assay are 
‘seen’ by some TBAb [16, 24]. TBAb can reduce the stimulatory ef-
fect of TSAb in vitro [21, 25] as well as in vivo [26]. Therefore, even 
a bioassay (whether using a chimeric or wild-type TSHR) whose 
‘readout’ is a signal for TSHR activation rather than ligand binding 
is not immune from interference by TBAb, if present in the same 
serum.

The question also arises as to how important (as urged by ad-
vertisers) is the possible presence of TBAb together with TSAb in 
the serum of a hyperthyroid patient? TBAb activity sufficient to 
cause hypothyroidism and thyroid atrophy are extremely rare rel-
ative to hyperthyroid patients with a diffuse goiter. Therefore, in 
the latter situation, it is irrelevant whether TBAb, if present concur-
rently with TSAb, contribute to a positive TBI or bridge assay. The 
net effect is thyroid stimulation. Determining both TBAb and TSAb 
is theoretically of potential value in some Graves’ patients in whom 
hyperthyroidism can rarely swing spontaneously to hypothyroid-
ism and vice versa [27]. However, detecting TBAb activity in a 
serum with TSAb is not straightforward. TBAb are measured indi-
rectly in a bioassay by their ability to reduce TSHR activation by a 
potent added ligand, TSH. A basic pharmacological principle is that 
a weak agonist is also an antagonist. It has been known for decades 
that TSAb binding overlaps with that of TSH [13], a finding con-
firmed at the atomic structural level [28]. Therefore, if TSAb poten-
cy in a Graves’ serum is less than that of the added TSH, the former 
will reduce TSH stimulation and can be interpreted as having TBAb 
activity. Many reports describing the current presence of TSAb and 
TBAb activities in the same serum are, therefore, open to question. 
The most definitive way to determine the presence of both TSAb 
and TBAb in an individual serum is to isolate them independently 
and demonstrate their specific, non-overlapping stimulatory or in-
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hibitory activities. To our knowledge there has been only one such 
demonstration [29].

In summary, in Graves’ disease the TBI and bridge assays, though 
not bioassays, do measure TSAb. In the vast majority of cases, the 
influence of TBAb in serum (if actually present) is not relevant in 
the presence of hyperthyroidism. TSAb bioassays (regardless of 
whether utilizing a chimeric or wild-type TSHR) provide similarly 
useful information, but are influenced in the opposite direction to 
TBI and bridge assays; TBAb, if present, will reduce the reported 
TSAb activity. Favoring TBI and bridge assays is that they are less 
complex, amenable to automation with a more rapid turn-around 
time, and cheaper than bioassays. Finally, the term TRAb (TSHR an-
tibody) commonly used for TBI assays does, in fact, refer to all TSHR 
autoantibody assays.

b) Role of the TSHR structure in Graves’ disease; the 
culprit as well as the victim
The TSHR undergoes intramolecular cleavage into an A-subunit 
comprising the N-terminal portion of the extracellular domain 
(ECD) linked by disulfide bonds to a largely transmembrane B-sub-
unit [30] (▶Fig. 1). It has long been known that the ECD is labile and 
shedding of a component, the A subunit or a fragment thereof, is 
enhanced under non-physiological conditions such as freeze-thaw-
ing membranes [31] or enhanced by cells made ‘sick’ by prolonged 
culture in medium with a greatly reduced fetal calf serum concen-
tration [32, 33]. Studies under the latter artificial conditions led to 
speculation that pathophysiological shedding of an ECD component 
could play a role in thyroid autoimmune diseases or cancer.

Generation of mouse monoclonal antibody (mAb) 3BD10 [34], 
to the isolated TSHR A-subunit (‘TSHR-289’) secreted by transfect-

ed CHO cells [18] has led to a cascading series of observations with 
a major impact on our understanding of the pathogenesis of 
Graves’ disease. To our initial disappointment, despite strong recog-
nition by ELISA of the recombinant TSHR A-subunit (the immuno-
gen), 3BD10 failed on flow cytometry to recognize the TSHR holore-
ceptor on the cell surface. In a serendipitous event that occurs only 
occasionally in a lifetime, a week after the 9/11 disaster Dr. Alan John-
stone in London e-mailed us to offer a mAb that, unlike our 3BD10, 
did recognize the TSH holoreceptor [35]. Coincidentally at the time 
we were traveling from Los Angeles to South Africa via London. In an 
unparalleled example of scientific generosity, Dr. Johnstone came 
to meet us in transit at Heathrow and gave us an aliquot of his mAb 
3E5. Returning to our laboratory 2 weeks later we tested 3E5 which, 
like our 3BD10, was negative on flow cytometry with the holore-
ceptor. Our initial thought that the mAb had ‘died’ was ruled out 
when 3E5, again like 3BD10, was strongly positive with the A sub-
unit on ELISA. To understand the discrepancy between our labs as 
to mAb recognition of the TSH holoreceptor, we asked Dr. John-
stone what TSHR expressing cell line he used. It was a cell line ex-
pressing the identical TSHR ECD anchored to the cell membrane by 
a small, flexible lipid molecule [glycosyl phosphatidylinositol (GPI)] 
rather than the hepta-helical transmembrane domain [36]. Confir-
mation in our lab of this differential recognition (TSH holoreceptor 
vs. TSHR-ECD-GPI) led us to hypothesize and, indeed, establish that 
TSAb in Graves’ sera similarly recognize the flexible ECD to a far 
greater extent [37] and with higher affinity [38] than the TSH 
holoreceptor. These data indicated partial steric hindrance for TSAb 
binding to the TSH holoreceptor, suggesting a mechanism by which 
these autoantibodies activate the receptor [37, 39]. Further, the 
data suggested that affinity maturation of high affinity TSAb did 

▶Fig. 1 Developments consequent to the molecular cloning of the TSHR. Schematic illustration of TSHR structure, cleavage and A-subunit shed-
ding (reproduced with permission from the Endocrine Society from: Rapoport B, McLachlan SM. TSH receptor cleavage into subunits and shedding 
of the A-subunit; a molecular and clinical perspective. Endocr Rev 2016; 37: 114–34). Other references in the text.
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not involve exposure of B cells to the TSH holoreceptor, but to a 
‘liberated’ extracellular component, the shed A-subunit.

Support for this hypothesis was made possible by the develop-
ment of induced models of Graves’ disease. For decades, thyroidi-
tis could be induced by immunizing animals with thyroid antigen 
(thyroglobulin) in adjuvant. However, such an approach with thy-
roid extracts or recombinant TSHR protein did not generate TSAb 
able to activate the endogenous TSHR in vivo and cause hyperthy-
roidism. The breakthrough occurred with the demonstration in 
1996 by Shimojo et al. that in vivo expression of the native TSHR 
was necessary for TSAb induction, attained by injecting mice with 
intact fibroblasts expressing the recombinant TSHR together with 
the autologous MHC class II molecule [40]. This in vivo expression 
approach was then extended to inducing hyperthyroidism in other 
mouse strains independent of MHC by DNA vaccination with a plas-
mid [41] or adenovirus vector [42] encoding the TSH holoreceptor. 
The latter model was used to test the shed A-subunit hypothesis 
mentioned above. Injecting an adenovirus expressing only the 
TSHR A-subunit induced TSAb and hyperthyroidism in a high pro-
portion of BALB/c mice. In contrast, injecting an adenovirus encod-
ing a TSH holoreceptor modified in its cleavage site to prevent 
cleavage and subsequent A-subunit shedding induced TSHR anti-
bodies without TSAb activity and no hyperthyroidism [43].

It is noteworthy that the closely related FSH and LH receptors 
do not cleave into subunits and there is no Graves’ disease of the 
gonads. In this respect, we described the TSHR as the culprit as well 
as the victim. Expression of the wild-type TSH holoreceptor does 
induce TSAb and hyperthyroidism, presumably by shedding of 
some of its cell surface A-subunits, but less effectively than in vivo 
expression of the free A-subunit. Consequent to this observation, 
it has become the general practice in different laboratories to study 
animal models of Graves’ disease induced by free A-subunit expres-
sion in vivo, using either an adenovirus vector or plasmid vaccina-
tion made more effective by electroporation [44]. The first mouse 
model of Graves’ ophthalmopathy was recently reported using the 
latter method [45].

Another finding of pathogenetic significance that would not 
have been made without TSHR mAb 3BD10 was that affinity puri-
fied recombinant TSHR A-subunits secreted by CHO cells [18] ex-
isted in two conformational forms, which we termed ‘active’ and 
‘inactive’ [46]. Active A-subunits in solution neutralized TSAb but 
were not recognized by 3BD10. Conversely, on ELISA inactive A-sub-
units were recognized by 3BD10 but not by TSAb. This differential 
recognition by 3BD10 enabled the separate purification of active 
and inactive TSHR A-subunits, both heavily glycosylated and with 
identical primary amino acid sequences [46]. Moreover, both 
A-subunit forms were conformationally ‘native’, with TSAb and 
3BD10 recognition eliminated upon denaturation. Purified active 
A-subunits spontaneously converted to the inactive form in a time 
and temperature dependent manner, a process stopped by the ad-
dition of chemical chaperones [46]. Only 15 years later, after crys-
tallization of the 3BD10 Fab and solving of its atomic structure by 
x-ray diffraction did a feasible explanation for the structural and 
behavioral differences between ‘active’ and ‘inactive’ TSHR A-sub-
units become apparent. In silico docking of the 3BD10 structure 
with the TSHR A-subunit structure [20] revealed that both 3BD10 
and TSAb could bind to an A-subunit monomer but, instead, pro-

vided evidence that active and inactive A-subunits were multimer-
ic, being trimers and dimers, respectively [47].

The foregoing findings permitted addressing the question of 
whether the TSHR immunogen in Graves’ disease is a monomer or 
multimeric. If a monomer, then autoantibodies in Graves’ patients’ 
sera should recognize both active and inactive A-subunits, as oc-
curs in mice immunized with vectors coding for the isolated A-sub-
unit [10]. However, testing of a large panel of Graves’ sera revealed 
recognition of only active A-subunit forms, providing evidence that 
multimeric, not monomeric, A-subunits initiated and/or amplified 
affinity maturation of pathogenic TSAb in the pathogenesis of 
Graves’ disease [48]. The TSH holoreceptor on the cell surface ex-
ists as a multimer [49, 50] and A-subunits could be shed either as 
multimers or form multimers after drainage to regional lymph 
nodes. Unlike A-subunits shed from the holoreceptor, DNA vectors 
and thyroid-targeted transgenic mice express the free A-subunit 
some of which is more likely to persist as a monomer, thereby in-
ducing antibodies to both active and inactive A-subunit forms.

c) TSHR A-subunit transgenic mice; regulatory  
T cell-mediated balance between Graves’ disease and 
Hashimoto’s thyroiditis
Insight into the importance of the shed TSHR A-subunit in the 
pathogenesis of Graves’ disease, together with prior knowledge 
that A-subunits stably expressed in mammalian cells were largely 
secreted [18] led to the generation of transgenic mice (BALB/c 
background) expressing the human TSHR A-subunit targeted to 
the thyroid gland [51]. One line of mice expressed high levels 
(Hi-expressor) and the other low levels (Lo-expressor) of the A-sub-
unit in the thyroid gland. Lo- but not Hi-expressors developed path-
ogenic TSHR antibodies when immunized with high doses of ade-
novirus encoding the human TSHR A-subunit [52]. Unlike, 
non-transgenic littermates, neither responded to low immuniza-
tion doses. These findings indicated different levels of self- toler-
ance to the transgenically expressed A-subunit, which correlated 
with the amount of human TSHR A-subunit expressed in the mouse 
thymus [51, 52]. Indeed, later studies in humans demonstrated 
that TSHR mRNA transcripts expressed at low levels in the thymus 
are associated with susceptibility to Graves’ disease while high in-
tra-thymic TSHR mRNA levels are protective [53, 54].

An attempt to overcome self-tolerance and boost the response 
to A-subunit immunization in Lo-expressor transgenic BALB/c mice 
by depleting regulatory T cells (Treg) using antibody to CD25 failed 
to enhance TSHR antibody levels but led to a result diametrically op-
posite to the hypothesis. Remarkably, the mice developed hypothy-
roidism in association with massive lymphocytic infiltration, elevat-
ed serum TSH levels and with antibody spreading to mouse Tg and 
mouse TPO, in other words Hashimoto’s disease [55]. It is well known 
that Graves’ disease and Hashimoto’s thyroiditis can co-exist or 
evolve from one to the other. The foregoing observations suggest 
an important role for Treg in this balance.

d) A mouse strain that spontaneously produces TSAb; 
hope for future immunotherapy for Graves’ disease
For approaching a century there has been no change in therapeu-
tic approaches for Graves’ disease. Thionamide drugs, radio-iodine 
and surgery are all effective in treating hyperthyroidism, but none 
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can cure the disease. The goal of an immunotherapeutic cure is to 
blunt or reverse the spontaneous generation of TSAb by the im-
mune system. Studies to attain this goal have been handicapped 
by the prior unavailability of an animal that spontaneously devel-
ops TSAb. Indeed, it is remarkable that only humans, not even great 
apes [56], develop TSAb with consequent Graves’ disease. In con-
trast to TSAb, several animals spontaneously develop thyroiditis 
associated with autoantibodies to Tg, typically accelerated by in-
gestion of excess iodide. Best studied are NOD.H2h4 mice [57] in 
which antibodies to TPO also arise a few months later than those 
to Tg [58]. However, NOD.H2h4 mice do not develop antibodies to 
the TSHR.

The hypothesis that introducing the human TSHR A-subunit into 
the thyroid of autoimmune-prone NOD.H2h4 mice would lead to 
the spontaneous generation of antibodies to the TSHR proved to 
be correct. TSHR/NOD.H2h4  mice were obtained by back-crossing 
Lo-expressor human TSHR A-subunit BALB/c transgenics to NOD.
H2h4 mice. Pathogenic TSHR antibodies (detected in TBI and TSAb 
assays) as well as non-pathogenic TSHR antibodies (ELISA) are pres-
ent at 6 months of age, about 2 months later than Tg antibodies 
[59], and persist up to 10 months, the latest point studied [60]. The 
TSHR/NOD.H2h4  mice do not become hyperthyroid because the 
TSAb arise to the human TSHR A-subunit expressed by the trans-
gene and do not cross react with the TSH holoreceptor on the thy-
roid of this mouse strain (like C57Bl/6 and unlike BALB/c mice) [61]. 
Remaining euthyroid, the TSHR/NOD.H2h4  mice have been criti-
cized as a model for Graves’ disease. However, the goal of immu-
notherapy for Graves’ disease will be to prevent or reverse the de-
velopment of TSAb, and remaining euthyroid is an advantage be-
cause of the diverse confounding effects of thyrotoxicosis on the 
immune system.

Numerous approaches to immunotherapy in induced animal 
models of Graves’ disease have targeted various cell types or mol-
ecules in the immune system (reviewed in [60]). However, effec-
tive TSHR antigen-specific therapy without affecting other aspects 
of the immune system is the ideal goal. Such studies, requiring sub-
stantial quantities of recombinant TSHR protein are in their early 
phase with limited information presently available. In an induced 
model (BALB/c mice immunized with hTSHR A-subunit adenovi-
rus), injecting A-subunit protein ameliorated the development of 
hyperthyroidism by diverting pathogenic TSHR antibodies to 
non-functional TSHR antibodies detected by ELISA [62]. This effect 
was specific for glycosylated, eukaryotic (not prokaryotic) TSHR 
protein and was not observed using mouse Tg as a control. More-
over, the diversion was only effective if TSHR A-subunit protein was 
injected before A-subunit adenovirus immunization, not after hy-
perthyroidism was established.

In contrast to these findings for induced Graves’ disease, inject-
ing A-subunit protein into hTSHR/NOD.H2h4 mice did not blunt the 
spontaneous development of pathogenic and non-pathogenic 
TSHR antibodies [60]. Indeed, levels of these antibodies were en-
hanced, presumably because the immune response to the TSHR 
autoantigen was already ongoing. Clearly, novel, antigen-specific 
immunotherapeutic approaches involving different modes of TSHR 
antigen presentation will be necessary to treat an established im-
mune response, with the hTSHR/NOD.H2h4 mice being an ideal ve-
hicle for this endeavor (discussed further below).

e) ‘Neutral’ TSHR autoantibodies
Recent reports that ‘neutral’ TSHR autoantibodies play an impor-
tant role in Graves’ disease [63, 64] are generating interest and in-
creasing recognition. The term ‘neutral’ is now considered to be a 
misnomer in that these antibodies signal via multiple non-G pro-
tein pathways that increase generation of reactive oxygen species 
and other pro-inflammatory cascades leading to thyrocyte apop-
tosis and thyroid inflammation in Graves’ disease and autoimmune 
thyroiditis [63–65]. In this sense neutral antibodies are proposed 
to counter balance TSAb-induced thyrocyte hyperplasia in a yin-
yang manner.

In our opinion, however, evidence for the existence of neutral 
TSHR antibodies in humans remains inconclusive, for several reasons:
i) Reports of 20–30 years ago that Graves’ IgG recognize syn-

thetic, linear peptides are cited in support of the presence of 
neutral antibodies [63–65]. However, these observations were 
assumed, incorrectly, to represent binding by TSAb or TBAb to 
linear TSHR epitopes (reviewed in [9]). Extrapolating these 
findings to the current neutral autoantibody thesis may not be 
valid.

ii) Neutral autoantibodies have linear epitopes within TSHR 
amino acid residues 322–356 [63], an area within the C-pep-
tide region that is deleted when the TSHR cleaves into disulfide 
linked A- and B-subunits (reviewed in [66]) (▶Fig. 1). For this 
reason, the proponents of neutral TSHR autoantibodies have 
renamed them “cleavage region” TSHR antibodies (C-TSHR-Ab) 
[64]. A corollary for cleavage region autoantibodies is that 
they can only bind to single chain TSHR in which the C-peptide 
cleavage region is present and not to cleaved, two-subunit 
receptors that lack this region. However, for many years, the 
prevailing concept, including by the advocates of neutral TSHR 
autoantibodies [67], has been that all, or the majority of, 
mature TSHR on the surface of thyrocytes are cleaved into 
subunits and lack the C-peptide region, and that single chain 
receptors are an artifact of transfected non-thyroidal cells 
[68–70]. Contrary evidence that a substantial proportion of 
TSHR on intact thyroid cells do, indeed, exist in single chain 
format [66, 71, 72] remains overlooked and awaits recognition 
to address this paradox.

iii) Description of the methodology used to demonstrate the 
presence of cleavage region TSHR autoantibodies in Graves’ 
sera is complex and difficult to follow (for example [63]). 
Moreover, the functional effects of neutral antibodies have 
only been reported for rodent mAb and not for polyclonal 
Graves’ IgG.

Therefore, conclusive proof for the existence of functional, human 
neutral TSHR autoantibodies will await the cloning of human mAb 
of this variety, as has been accomplished for human TSAb [73] and 
TBAb [74].

f) Extrathyroidal manifestations of Graves’ disease
Therapy for these distressing conditions remain more challenging 
than for Graves’ hyperthyroidism. Future, more effective treatment 
modalities depend on advances in understanding their pathogen-
esis. In Graves’ ophthalmopathy (GO), increased hyaluronan gen-
eration and edema is caused by an immune response to the TSHR 
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expressed on fibroblasts/preadipocytes. We take issue with the pre-
vailing opinion expressed in a current major textbook that cellular 
immunity (T cells) is most important in initiating GO and that  
‘locally’ produced TSAb (humoral immunity) provide ‘additional’ 
effects on orbital tissue [75]. Certainly, T cell help is necessary for 
B cell maturation and a variety of cytokines of T cell origin can in-
duce hyaluronan overproduction. However, lymphocytic infiltra-
tion of orbital tissue is relatively sparse, generating a cytokine pro-
file similar to that in normal tissue and different from that in other 
orbital inflammatory conditions [76]. GO and Graves’ dermopathy 
are associated with very high levels of TSAb that markedly stimu-
late hyaluronan (HA) production by orbital fibroblasts, even before 
differentiation into adipocytes [77, 78]. Moreover, elevation of a 
non-immune molecule, TSH, caused by non-compliance with thy-
roxine therapy, can greatly exacerbate GO to the point of requiring 
enucleation (personal patient). For these reasons, the humoral im-
munity contribution to clinical GO cannot be considered subservi-
ent to cellular immunity and may even be dominant.

A paradox needs to be addressed in understanding the patho-
genesis of the extrathyroidal manifestations of Graves’ disease. 
Why, if the TSHR is widely expressed in extrathyroidal tissues are 
the clinical manifestation of Graves’ disease limited to the thyroid, 
orbital tissue and skin, the latter primarily affecting the lower ex-
tremities? There is overlooked evidence that Graves’ disease is a 
systemic disorder with clinical localization depending on other fac-
tors. Most convincing is that urinary excretion of glycosaminogly-
can (hyaluronan) is increased in GO to an extent that cannot be ex-
plained as originating from a small mass of orbital tissue [79, 80], 
as well as in Graves’ disease independent of the presence of GO [81]. 
In the thyroid, the TSHR is linked to thyrocytes secreting thyroid 
hormones. So why involvement of the orbit and lower extremities? 
Functional TSHR protein is clearly present in fibroblasts in the upper 
dermis of normal tissue, such as breast [82] and other diverse lo-
cations [83] and TSAb can increase HA production by fibroblasts 
from individuals without Graves’ disease [78]. Even though this in-
crease is less than in Graves’ orbital fibroblasts, the skin is the larg-
est ‘organ’ in the body and is likely to be the major source of in-
creased HA urinary excretion.

Nearly 20 years ago we put forward an hypothesis [82] that, in 
our opinion, remains attractive even though overlooked in the lit-
erature. We proposed an answer to the foregoing paradox in that 
the orbit is particularly vulnerable to clinical GO because its volume 
(approximately 20 ml) is constrained by its bony dimensions, as well 
as by the strength of the orbicularis retaining ligament. Even a very 
small increase in volume caused by HA, edema, and adipogenesis 
will compress low pressure venous and lymphatic vessels (similar 
to a ‘compartment syndrome’ in a limb), with reduced clearance 
of HA and cytokines thereby increasing swelling. Development of 
clinical GO depends on the balance between the magnitude of 
TSAb activity and the anatomical characteristics of the individual 
orbit (greater TSAb activity required in the mouse with a more open 
bony orbit than in humans). Orbital edema can be further in-
creased, commonly by cigarette smoke and less frequently occur-
ring trauma (for example botox injections and cataract surgery). In 
the absence of bony constraints, development of Graves’ dermo-
pathy requires more potent TSAb activity together with local fac-
tors well described in the literature such as unilateral venous insuf-

ficiency or trauma [82]. An important point, contrary to descrip-
tions in some textbooks and reviews, is that local trauma is not a 
significant factor in the initiation of GO and Graves’ dermopathy. 
Most GO is not associated with trauma, but trauma may aggravate 
the underlying pathogenetic process analogous to the Koebner 
phenomenon in some cutaneous diseases [84].

It is logical that therapy of an autoimmune condition targeting 
a single, specific antigen such as the TSHR will be effective if this 
interaction is prevented. Conversely, it is self-evident that less spe-
cific targeting of molecules with functions common to orbital tis-
sue and diverse organs or cell types, although possibly effective in 
treating GO, risks potentially serious side effects. For this reason, 
we question the present emphasis on the latter forms of therapy, 
the foremost example being systemic suppression of IGF-1 receptor 
(IGF-1R) function with Teprotumumab (monoclonal antibody to 
the IgF1R) [85]. It has long been known that IGF-1 acts synergisti-
cally with TSAb on thyrocytes [86] and early reports of autoanti-
bodies in Graves’ disease to the IGF-1R [87, 88] encouraged this 
therapeutic approach. It was further suggested that TSAb directly 
activate the IGF-1R which exists in complex with the TSHR [89]. 
However, recent evidence has both refuted the importance of IGF-1R 
autoantibodies in Graves’ disease [90, 91] and has demonstrated 
that the TSHR and IGF-1R act independently with synergy reflect-
ing post-receptor signaling cross-talk [91, 92]. Nevertheless, be-
cause of this synergy it is to be expected that systemic IGF-1R 
blockade will ameliorate GO, at least in part, but side effects with 
IGF-1R blockade in cancer therapy [93] raise questions whether 
more experience with GO will counter the preliminary report of its 
safety [85]. If activation of the TSHR in orbital tissue can be pre-
vented, non-specific IGF-1R blockade becomes moot. Indeed, pre-
liminary data (see below) suggest that therapy focused on the TSHR 
alone, independent of IGF-1R blockade, may be effective in ame-
liorating the signs and symptoms of GO [94].

Synthetic ‘small molecule’ TSHR antagonists have been isolat-
ed by several groups [95–97]. More antigen specific than systemic 
IGF-1R blockade, these molecules enter a pocket in the transmem-
brane domain and have relative in vitro specificity for the TSHR 
compared to the closely related gonadotropin hormone receptors. 
However, the TSHR belongs to the G-protein coupled receptor su-
perfamily of nearly 800 members, many of which are ‘orphan’ with 
unknown function and TSHR small molecule antagonists may have 
unanticipated adverse actions on in vivo testing. Further molecu-
lar refinement is likely to improve specificity for the TSHR and may 
lead to effective treatment, but not a cure. Anti-CD20 mediated  
B cell depletion with Rituximab, a logical approach though not an-
tigen specific and with potential serious side effects, has had mixed 
results in prospective clinical trials [98, 99]. It should be noted that 
Rituximab targets pre-B cells and mature B cells not very long-lived 
plasma cells that are the major source of TSAb and its effect may 
be on antigen presentation [100] and below).

Remarkably, contrary to the need for development of anti-
gen-specific therapy for GO, an ever-growing number of non-spe-
cific immune-related and signal transduction molecules are being 
proposed as potential targets for therapy in GO. Indeed, one labo-
ratory in the past 4 years has published data on the following mol-
ecules described to be of interest in this regard; IL-1R antagonist, 
IL-6, IL-8, IL-12, IL-23/IL-17, TNF alpha, Slit2, CXCL-12/CXCR4, Pen-
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traxin-3, PTEN, AIRE, PCP-1, and p53 [101–108]. The modified Bill 
Clinton campaign slogan mentioned above deserves repeating.

Recognition of Thyroid Autoantigens by  
T and B Cells

Over the past 40 years we have witnessed great progress in under-
standing the role of T cells in the pathogenesis of autoimmune dis-
eases, including the thyroid-related seminal discovery of cy-
tokine-induced, ‘aberrant’ HLA class II expression on thyrocytes 
[109] that enable the former to function as antigen-presenting cells 
leading to T cell activation [110]. Elucidation of the atomic struc-
tures of the T cell receptor complex and MHC molecules, particu-
larly class II, combined with information on processed antigenic 
peptides binding to a cleft in the former, has greatly advanced in-
sight into autoimmune disease pathogenesis, including genetic 
susceptibility [111]. Advances in understanding the genetic basis 
for thyroid autoimmunity over these 40 years are too numerous to 
review here but some papers are cited in the appropriate sections. 
Also, we note, but do not address, the increasing interest in the role 
of the gut microbiome in thyroid autoimmunity (for example 
[112]). Finally, regarding the role of T cells in thyroid autoimmun-
ity, in our opinion antigen specificity is the key, carrying more 
weight than the voluminous literature describing T cell subsets such 
as regulatory T cells in the absence of such specificity.

Reflecting on our personal contributions, a number of observa-
tions stand out. Early studies on antigen-specific lymphocytes, both 
T and B cells, within Graves’ and Hashimoto thyroid tissue and thy-
roid draining lymph nodes have had a major impact on our work. 
In particular, cultured intrathyroidal lymphocytes, most likely plas-
ma cells, spontaneously secreted antibodies to Tg, the ‘microso-
mal antigen’ (TPO) and the TSHR [7, 113]. In contrast, peripheral 
blood lymphocytes required activation by mitogen or Epstein Barr 

virus. This realization opened the door to constructing human im-
munoglobulin heavy and light chain gene combinatorial libraries 
from Graves’ thyroid tissue mRNA (most likely plasma cells). The 
availability of purified recombinant TPO [114] and Tg convention-
ally purified from thyroid tissue enabled screening of these librar-
ies and the isolation of recombinant Fab specific for TPO [115–117] 
and Tg [118] (▶Fig. 2). Similar studies were performed by others 
for recombinant human autoantibodies to TPO [119, 120] and  
Tg [121]. We used the same approach to isolate human autoanti-
bodies to acetylcholine receptors from a myasthenia gravis thymus 
combinatorial library [122].

The molecular cloning and expression of large panels of recom-
binant human autoantibodies to TPO obtained from different pa-
tients’ immunoglobulin gene libraries revealed that these autoan-
tibodies essentially cover the entire repertoire of TPO epitopes in 
human thyroid autoimmunity, to our knowledge a unique body of 
information for an autoantigen [115]. Study of these TPO autoan-
tibodies has provided much information (reviewed in [123]), in-
cluding; (i) restricted heavy and light chain immunoglobulin gene 
usage, (ii) substantial mutation from germline sequences indicat-
ing antigen-driven, high affinity maturation, (iii) recognition of 
highly conformational epitopes confined to a restricted, or ‘immu-
nodominant’ facet on the globular TPO molecule, unlike the rec-
ognition of diverse epitopes recognized by sera from immunized 
rabbits or mice (reviewed in [124]), (iv) in individual patients’ sera, 
the spectrum of polyclonal TPO autoantibody epitopes within the 
immunodominant region could be ‘fingerprinted’, (v) the TPO au-
toantibody fingerprint in an individual was not associated with the 
development of hypothyroidism, but, (vi) remained unchanged de-
spite major fluctuations in antibody titer during and after pregnan-
cy and, (vii) remained essentially unchanged over as long as  
13 years, indicating a lack of epitope spreading, at least for TPO au-
toantibodies and, (vii) negation of the concept of bispecific human 
autoantibodies to both TPO and Tg [125]. Although progress was 

▶Fig. 2 Tg and TPO recognition by T and B cells. Comparison of TPO recognition by antibodies from immunized mice versus human autoantibodies 
and schematic illustration of the immunodominant region (reproduced with permission from: McLachlan SM, Rapoport B. Thyroid peroxidase as an 
autoantigen. Thyroid 2007; 17: 939–948, 2007).
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made in identifying a number of regions and specific amino acids 
within the TPO immunodominant region by mutagenesis and chi-
meric substitutions with myeloperoxidase segments, and although 
the crystal structure of one human TPO Fab was solved [126], final 
determination of the immunodominant regions by x-ray crystal-
lography remains to be accomplished.

Even though our studies focused mainly on the effector mech-
anisms of autoantibodies in Graves’ hyperthyroidism and GO, as 
mentioned above, T cells are obviously necessary for B cell devel-
opment and antibody production. Activation of thyroid anti-
gen-specific T cells requires binding to a peptide component of this 
antigen inserted in the MHC groove (or pocket) on an antigen-pre-
senting cell, and identifying specific peptides that contribute to 
disease is an important avenue of investigation with the future goal 
of immunotherapy. Peptide (‘T cell epitope’) selection in these 
studies on thyroid autoimmunity has been accomplished by a num-
ber of approaches:
(i) Random screening of T cell activation by sequential, small 

synthetic peptides based on the primary amino acid sequence 
of the antigen. Numerous early studies (including from our 
laboratory) produced variable findings beyond the scope of 
the present review.

(ii) Use of algorithms to predict the likelihood of a synthetic pep-
tide being a T cell epitope. One TPO peptide synthesized on 
the basis of a T cell epitope algorithm activated a Graves’ thy-
roid-derived T cell clone [127] and a mouse expressing the 
transgene of this T cell receptor spontaneously developed thy-
roiditis [128].

(iii) Using the known atomic structure of a relevant MHC class II 
molecule to screen for high affinity binding of antigen syn-
thetic peptides in silico with subsequent testing of their signif-
icance in vitro and in vivo, has identified T cell epitopes of 
potential importance [129] as well as evidence using tetramer 
technology of a combined Tg and TPO specific cytotoxic T cell 
epitope in HLA-A2 Hashimoto patients [130] .

(iv) Rather than studying synthetic antigenic peptides, 
approaches have been employed to identify naturally pro-
cessed peptide epitopes (NPPE), the actual T cell epitopes 
occurring in disease. Peptides for Tg, a protein present at 
extremely high concentration in the thyroid, have been 
extracted from HLA-DR molecules purified from Graves’ thy-
roids [131] but no peptides from TPO and the TSHR, far less 
abundant proteins, were isolated.

(v) Membrane-associated immunoglobulins on B cells function 
as receptors for specific antigens, making these cells highly 
efficient in antigen presentation and NPPE generation. Unlike 
macrophages and dendritic cells that are non-discriminatory 
‘vacuum cleaners’, high affinity IgG antigen receptors capture 
their cognate antigen even when the latter is at low concen-
tration in a mixture of proteins, followed by internalization of 
the IgG-antigen complex. Importantly, antigen processing is 
influenced depending on the epitope to which the IgG binds, 
thereby determining which naturally processed peptides are 
presented to T cells [132].

Based on these findings, we have long considered TPO-specific, 
high affinity IgG receptors on B cells to be important tools for stud-

ying autoimmune thyroiditis. Cloning and expression of a reper-
toire of TPO human autoantibodies provided important tools for 
such an endeavor [133–135]. However, unable to convince NIH 
grant reviewers of the importance of TPO autoantibodies in anti-
gen presentation, these studies were discontinued. We are pleased 
to note that more than a decade later, immunologists (as opposed 
to endocrinologists) are returning to the importance of B cells in 
the pathogenesis of thyroid autoimmunity, namely that thyroid 
antigen specific B cells in the circulation of recent onset patients 
are not anergic but express an activation marker (CD86) [136].

Recent Approaches to Antigen-Specific 
Therapy for Thyroid Autoimmunity

Very recently, preliminary reports on antigen-specific therapy for 
thyroid autoimmunity have emerged:
(i) Most dramatic is the first human study attempting immuno-

therapy in Graves’ disease by inducing T cell tolerance by 
immunizing with TSHR peptides (ATX-GD-59)[137]. This study 
is based on the report that pre-treatment with these peptides 
blunts the humoral and cell-mediated immune responses to 
TSHR A-subunit adenovirus immunization of transgenic mice 
expressing the human HLA-DR3 molecule [138]. TSHR recep-
tor antibodies in this mouse study were measured by ELISA, a 
method known to detect non-pathogenic TSHR antibodies 
lacking TSAb activity (for example [59, 62] and data on patho-
genic TSAb are not reported. Further, no information is pro-
vided on whether immunization with peptides ATX-GD-59 will 
have a similar effect in established disease. As noted above, 
pretreatment with TSHR A-subunit protein only ameliorates 
induced Graves’ disease when injected prior to disease induc-
tion by diverting the generation of pathogenic TSHR autoanti-
bodies to a non-pathogenic form detected by ELISA. In 
contrast, injection of TSHR A-subunit protein after the induc-
tion of hyperthyroidism was ineffective [62]. In TSHR/NOD.
H2h4 mice that spontaneously develop TSAB, treatment with 
TSHR A-subunit protein enhanced development of pathogenic 
TSAb [60]. Limitations of the study in Graves’ patients [137] 
include the small number of subjects, their selection for mild 
disease, with 4 of 9 attaining euthyroidism (a ‘full” response) 
over a 20 week period. Absent from the study are control indi-
viduals with mild disease. If confirmed in a larger double-blind 
study, this form of immunotherapy would clearly represent a 
major advance and the first to be effective in established disease.

(ii) In the first use in humans of a TSHR blocking antibody, injec-
tions of human mAb K1-70 over an 11 month period reduced 
the signs and symptoms of severe Graves’ ophthalmopathy in 
a patient with advanced follicular thyroid carcinoma also 
receiving lenvatinib chemotherapy for much of this period 
[94]. Unlike immune tolerance induced by immunotherapy, 
therapy with an antibody will treat, but not cure, disease. This 
report on a single patient is preliminary, yet given the subop-
timal forms of therapy presently available for Graves’ ophthal-
mopathy, K1-70 may prove to be a valuable therapeutic 
reagent, more specific for the disease than blocking the 
IGF-1R.
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(iii) Nano-particle delivery of antigens to antigen presenting 
cells for NPPE generation and presentation to T cells: We have 
investigated the gold nanoparticle antigen delivery method 
that prevented onset of Type I diabetes in NOD mice [139]. 
However, when used with recombinant TSHR A-subunit pro-
tein together with the same tolerogenic molecule, spontane-
ous development of TSAb was not suppressed, but accelerated 
in hTSHR/NOD. H2h4 mice (unpublished data). A more promis-
ing method of antigen presentation for the treatment of auto-
immunity (that we would have attempted had NIH grant 
support permitted us to continue) is to use TSHR A-subunit 
protein encapsulated within, rather than on the surface of, a 
nanoparticle [140].

Then and Now – The Future of Research in 
Thyroid Autoimmunity

When we started working in thyroid autoimmunity, all diseases 
were equal. However, now some diseases are more equal than oth-
ers (apologies to George Orwell), at least in the USA. Despite being 
the most common autoimmune diseases affecting humans, Graves’ 
disease and Hashimoto’s thyroiditis are not included among eight 
autoimmune diseases targeted for investigation by the NIH (https://
www.niaid.nih.gov/diseases-conditions/autoimmune-disease-re-
search). The major reason for this absence, clearly, is economic. 
Contrary to our idealistic views at the outset of our careers, health 
care in the USA is now described as an ‘industry’, doctors as ‘pro-
viders’ and the goal is for ‘translational’, as opposed to ‘basic’, in-
vestigation leading to more rapid implementation of findings by 
pharmaceutical companies. We have to accept this reality which, 
fortunately, did not exist when we were younger.

Nevertheless, there is hope. Although very few in the US, more 
scientists are involved in basic studies on thyroid autoimmunity in 
Europe, Japan, and particularly in China. Our hope is that these in-
dividuals will receive the necessary incentives and support to con-
tinue and to expand their studies. As described above, building on 
the knowledge of well-defined thyroid autoantigens, approaches 
are being developed for efficient and safe antigen-specific thera-
pies for Graves’ and Hashimoto’s diseases, the principles of which 
could be applied to other organ-specific autoimmune diseases.
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