Aktuelle Neurologie 2018; 45(08): 592-604
DOI: 10.1055/a-0646-3746
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Zerebrale Mikroangiopathien

Cerebral Small Vessel Disease
Marco Düring
1   Institut für Schlaganfall- und Demenzforschung, Klinikum der Universität München, München
,
Christian Opherk
2   SLK-Kliniken Heilbronn GmbH, Klinik für Neurologie, Klinikum am Gesundbrunnen, Heilbronn
› Author Affiliations
Further Information

Publication History

Publication Date:
03 August 2018 (online)

Zusammenfassung

Zerebrale Mikroangiopathien, Erkrankungen der kleinen Gefäße (perforierende Arterien und Arteriolen, Kapillaren, Venolen) des Gehirns, sind häufige Ursachen von Schlaganfall und vaskulärer Demenz. Die häufigste Form ist alters- und hypertonieassoziiert, die genauen Pathomechanismen sind jedoch weitgehend unbekannt. Weitere relevante Formen sind die zerebrale Amyloidangiopathie und monogen vererbte Mikroangiopathien, wie bspw. CADASIL als häufigste erbliche Schlaganfallerkrankung. An klinischen Manifestationen finden sich akute (ischämischer oder hämorrhagischer Schlaganfall) und chronische Symptome. Zu letzteren zählen eine Gangstörung, affektive Symptome und eine vaskuläre kognitive Störung mit Defiziten vorwiegend im Bereich der Exekutivfunktionen. In der MRT finden sich charakteristische Gewebeläsionen, u. a. konfluierende T2-Hyperintensitäten (Leukenzephalopathie), Lakunen, Mikroblutungen und kortikale Mikroinfarkte. Zudem kommt es im Verlauf zu einer Gehirnatrophie. Differenzialdiagnostisch müssen die verschiedenen Formen der Mikroangiopathie voneinander abgegrenzt werden, da dies ggf. therapeutische Konsequenzen hat. Ferner stellen entzündliche ZNS-Erkrankungen und Leukodystrophien mögliche Differenzialdiagnosen dar. Therapeutisch steht die Optimierung des Gefäßrisikoprofils im Vordergrund.

Abstract

Cerebral small vessel disease (CSVD) is a frequent cause of stroke and vascular dementia. CSVD is characterized by alterations of the small blood vessels of the brain, i. e. penetrating arteries and arterioles, as well as capillaries and venules. The most common form of CSVD is related to aging and hypertension. The exact mechanisms are, however, poorly understood. Other important forms are cerebral amyloid angiopathy and inherited CSVD, such as CADASIL, the most common monogenic disease leading to stroke. Distinguishing between different forms of CSVD can have clinical implications. CSVD manifests with acute (ischemic or hemorrhagic stroke) and chronic symptoms. The latter include gait and mood disorders and vascular cognitive impairment. The small penetrating vessels cannot be visualized on routine MRI. Neuroimaging relies on characteristic tissue alterations, such as white matter hyperintensities, lacunes, microbleeds, cortical microinfarcts and atrophy. Especially regarding imaging findings, multiple sclerosis and leukodystrophies are relevant differential diagnoses. Current CSVD treatment is focused on the management of vascular risk factors.

 
  • Literatur

  • 1 Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689-701
  • 2 Filomena J, Riba-Llena I, Vinyoles E. et al. Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension. Hypertension 2015; 66: 634-640 ; discussion 445
  • 3 Yamaguchi Y, Wada M, Sato H. et al. Impact of ambulatory blood pressure variability on cerebral small vessel disease progression and cognitive decline in community-based elderly Japanese. Am J Hypertens 2014; 27: 1257-1267
  • 4 Diaz KM, Veerabhadrappa P, Kashem MA. et al. Visit-to-visit and 24-h blood pressure variability: association with endothelial and smooth muscle function in African Americans. J Hum Hypertens 2013; 27: 671-677
  • 5 Shah IM, Ghosh SK, Collier A. Stroke presentation in Type 2 diabetes and the metabolic syndrome. Diabetes Res Clin Pract 2008; 79: e1-4
  • 6 Jackson CA, Hutchison A, Dennis MS. et al. Differing risk factor profiles of ischemic stroke subtypes: evidence for a distinct lacunar arteriopathy?. Stroke 2010; 41: 624-629
  • 7 Jackson C, Sudlow C. Are lacunar strokes really different? A systematic review of differences in risk factor profiles between lacunar and nonlacunar infarcts. Stroke 2005; 36: 891-901
  • 8 Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimerʼs disease. Acta Neuropathol 2016; 131: 659-685
  • 9 Craggs LJ, Yamamoto Y, Deramecourt V. et al. Microvascular pathology and morphometrics of sporadic and hereditary small vessel diseases of the brain. Brain Pathol 2014; 24: 495-509
  • 10 Thal DR, Grinberg LT, Attems J. Vascular dementia: different forms of vessel disorders contribute to the development of dementia in the elderly brain. Exp Gerontol 2012; 47: 816-824
  • 11 Ghosh M, Balbi M, Hellal F. et al. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 2015; 78: 887-900
  • 12 Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 2011; 32: 528-534
  • 13 Keith J, Gao FQ, Noor R. et al. Collagenosis of the deep medullary veins: an underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction?. J Neuropathol Exp Neurol 2017; 76: 299-312
  • 14 Gouw AA, Seewann A, van der Flier WM. et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2011; 82: 126-135
  • 15 Highley JR, Gebril OH, Simpson JE. et al. Axonal preservation in deep subcortical white matter lesions in the ageing brain. J Aging Sci 2014; 2: 118
  • 16 Westover MB, Bianchi MT, Yang C. et al. Estimating cerebral microinfarct burden from autopsy samples. Neurology 2013; 80: 1365-1369
  • 17 Wardlaw JM, Valdes Hernandez MC, Munoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc 2015; 4: 001140
  • 18 Pantoni L. Pathophysiology of age-related cerebral white matter changes. Cerebrovasc Dis 2002; 13 (Suppl. 02) 7-10
  • 19 Fisher CM. The arterial lesions underlying lacunes. Acta neuropathologica 1968; 12: 1-15
  • 20 Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol 1986; 19: 253-262
  • 21 Poggesi A, Pasi M, Pescini F. et al. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J Cereb Blood Flow Metab 2016; 36: 72-94
  • 22 Nezu T, Hosomi N, Aoki S. et al. Endothelial dysfunction is associated with the severity of cerebral small vessel disease. Hypertens Res 2015; 38: 291-297
  • 23 Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease--systematic review and meta-analysis. Neurobiol Aging 2009; 30: 337-352
  • 24 Wardlaw JM, Makin SJ, Valdés Hernández MC. et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimers Dement 2016; 13: 634-643
  • 25 Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013; 12: 483-497
  • 26 Cognat E, Cleophax S, Domenga-Denier V. et al. Early white matter changes in CADASIL: evidence of segmental intramyelinic oedema in a pre-clinical mouse model. Acta Neuropathol Commun 2014; 2: 49
  • 27 Rosenberg GA, Wallin A, Wardlaw JM. et al. Consensus statement for diagnosis of subcortical small vessel disease. J Cereb Blood Flow Metab 2016; 36: 6-25
  • 28 Chauhan G, Debette S. Genetic risk factors for ischemic and hemorrhagic stroke. Curr Cardiol Rep 2016; 18: 124
  • 29 Falcone GJ, Malik R, Dichgans M. et al. Current concepts and clinical applications of stroke genetics. Lancet Neurol 2014; 13: 405-418
  • 30 Duering M, Zieren N, Herve D. et al. Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain 2011; 134: 2366-2375
  • 31 Duering M, Gesierich B, Seiler S. et al. Strategic white matter tracts for processing speed deficits in age-related small vessel disease. Neurology 2014; 82: 1946-1950
  • 32 Duering M, Gonik M, Malik R. et al. Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. Neuroimage 2012; 66C: 177-183
  • 33 Lawrence AJ, Chung AW, Morris RG. et al. Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology 2014; 83: 304-311
  • 34 Duering M, Righart R, Wollenweber FA. et al. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 2015; 84: 1685-1692
  • 35 Duering M, Righart R, Csanadi E. et al. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology 2012; 79: 2025-2028
  • 36 Benavente OR, Hart RG. The SPS3 Investigators. et al. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N Engl J Med 2012; 367: 817-825
  • 37 Valdes Hernandez MC, Maconick LC, Munoz Maniega S. et al. A comparison of location of acute symptomatic vs. ‘silent’ small vessel lesions. Int J Stroke 2015; 10: 1044-1050
  • 38 Fisher CM. Lacunar strokes and infarcts: a review. Neurology 1982; 32: 871-876
  • 39 Potter GM, Doubal FN, Jackson CA. et al. Counting cavitating lacunes underestimates the burden of lacunar infarction. Stroke 2010; 41: 267-272
  • 40 Duering M, Csanadi E, Gesierich B. et al. Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain 2013; 136: 2717-2726
  • 41 Dichgans M, Leys D. Vascular cognitive impairment. Circ Res 2017; 120: 573-591
  • 42 Szirmai I, Vastagh I, Szombathelyi E. et al. Strategic infarcts of the thalamus in vascular dementia. J Neurol Sci 2002; 203-204: 91-97
  • 43 Tatemichi TK, Desmond DW, Prohovnik I. Strategic infarcts in vascular dementia. A clinical and brain imaging experience. Arzneimittelforschung 1995; 45: 371-385
  • 44 Moreton FC, Razvi SS, Davidson R. et al. Changing clinical patterns and increasing prevalence in CADASIL. Acta neurologica Scandinavica 2014; 130: 197-203
  • 45 Joutel A, Corpechot C, Ducros A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996; 383: 707-710
  • 46 Joutel A, Vahedi K, Corpechot C. et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 1997; 350: 1511-1515
  • 47 Rutten JW, Dauwerse HG, Gravesteijn G. et al. Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol 2016; 3: 844-853
  • 48 Guey S, Mawet J, Herve D. et al. Prevalence and characteristics of migraine in CADASIL. Cephalalgia 2016; 36: 1038-1047
  • 49 Schon F, Martin RJ, Prevett M. et al. „CADASIL coma“: an underdiagnosed acute encephalopathy. J Neurol Neurosurg Psychiatry 2003; 74: 249-252
  • 50 Chabriat H, Joutel A, Dichgans M. et al. Cadasil. Lancet Neurol 2009; 8: 643-653
  • 51 Opherk C, Gonik M, Duering M. et al. Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL. Stroke 2014; 45: 968-972
  • 52 Wollenweber FA, Hanecker P, Bayer-Karpinska A. et al. Cysteine-sparing CADASIL mutations in NOTCH3 show proaggregatory properties in vitro. Stroke 2015; 46: 786-792
  • 53 Dichgans M, Markus HS, Salloway S. et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol 2008; 7: 310-318
  • 54 Lukas J, Scalia S, Eichler S. et al. Functional and Clinical Consequences of Novel alpha-Galactosidase A Mutations in Fabry Disease. Hum Mutat 2016; 37: 43-51
  • 55 Mehta A, Beck M, Elliott P. et al. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet 2009; 374: 1986-1996
  • 56 Hara K, Shiga A, Fukutake T. et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 2009; 360: 1729-1739
  • 57 Nozaki H, Nishizawa M, Onodera O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2014; 45: 3447-3453
  • 58 Verdura E, Herve D, Scharrer E. et al. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain 2015; 138: 2347-2358
  • 59 Haffner C, Vinters HV. CADASIL, CARASIL, CARASAL: The linguistic subtleties of cerebral small vessel disease. Neurology 2016; 87: 1752-1753
  • 60 Tan RY, Markus HS. Monogenic causes of stroke: now and the future. J Neurol 2015; 262: 2601-2616
  • 61 Charlton RA, Morris RG, Nitkunan A. et al. The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology 2006; 66: 1523-1526
  • 62 Freitas S, Simoes MR, Alves L. et al. Montreal Cognitive Assessment (MoCA): validation study for vascular dementia. J Int Neuropsychol Soc 2012; 18: 1031-1040
  • 63 Pendlebury ST, Mariz J, Bull L. et al. MoCA, ACE-R, and MMSE versus the National Institute of Neurological Disorders and Stroke-Canadian Stroke Network Vascular Cognitive Impairment Harmonization Standards Neuropsychological Battery after TIA and stroke. Stroke 2012; 43: 464-469
  • 64 Tombaugh TN. Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 2004; 19: 203-214
  • 65 Taillia H, Chabriat H, Kurtz A. et al. Cognitive alterations in non-demented CADASIL patients. Cerebrovasc Dis 1998; 8: 97-101
  • 66 Jouvent E, Reyes S, De Guio F. et al. Reaction time is a marker of early cognitive and behavioral alterations in pure cerebral small vessel disease. J Alzheimers Dis 2015; 47: 413-419
  • 67 Wardlaw JM, Smith EE, Biessels GJ. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822-838
  • 68 Zwanenburg JJM, van Osch MJP. Targeting Cerebral Small Vessel Disease With MRI. Stroke 2017; 48: 3175-3182
  • 69 Bouvy WH, Biessels GJ, Kuijf HJ. et al. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest Radiol 2014; 49: 307-313
  • 70 van Veluw SJ, Shih AY, Smith EE. et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol 2017; 16: 730-740
  • 71 Wollenweber FA, Baykara E, Zedde M. et al. Cortical superficial siderosis in different types of cerebral small vessel disease. Stroke 2017; 48: 1404-1407
  • 72 Lummel N, Wollenweber FA, Demaerel P. et al. Clinical spectrum, underlying etiologies and radiological characteristics of cortical superficial siderosis. J Neurol 2015; 262: 1455-1462
  • 73 Linn J, Halpin A, Demaerel P. et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010; 74: 1346-1350
  • 74 Pichler M, Vemuri P, Rabinstein AA. et al. Prevalence and natural history of superficial siderosis: a population-based study. Stroke 2017; 48: 3210-3214
  • 75 Arboix A, Massons J, Garcia-Eroles L. et al. Clinical predictors of lacunar syndrome not due to lacunar infarction. BMC Neurol 2010; 10: 31
  • 76 Baumgartner RW, Sidler C, Mosso M. et al. Ischemic lacunar stroke in patients with and without potential mechanism other than small-artery disease. Stroke 2003; 34: 653-659
  • 77 Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol 2016; 1: 83-92
  • 78 Petrone L, Nannoni S, Del Bene A. et al. Branch atheromatous disease: a clinically meaningful, yet unproven concept. Cerebrovasc Dis 2016; 41: 87-95
  • 79 Charidimou A, Imaizumi T, Moulin S. et al. Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: a meta-analysis. Neurology 2017; 89: 820-829
  • 80 Brownlee WJ, Hardy TA, Fazekas F. et al. Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017; 389: 1336-1346
  • 81 Hajj-Ali RA, Singhal AB, Benseler S. et al. Primary angiitis of the CNS. Lancet Neurol 2011; 10: 561-572
  • 82 Ahmed RM, Murphy E, Davagnanam I. et al. A practical approach to diagnosing adult onset leukodystrophies. J Neurol Neurosurg Psychiatry 2014; 85: 770-781
  • 83 Lynch DS, Rodrigues Brandao de Paiva A, Zhang WJ. et al. Clinical and genetic characterization of leukoencephalopathies in adults. Brain 2017; 140: 1204-1211
  • 84 Gattringer T, Pinter D, Enzinger C. et al. Serum neurofilament light is sensitive to active cerebral small vessel disease. Neurology 2017; DOI: 10.1212/WNL.0000000000004645.
  • 85 Jonsson M, Zetterberg H, van Straaten E. et al. Cerebrospinal fluid biomarkers of white matter lesions – cross-sectional results from the LADIS study. Eur J Neurol 2010; 17: 377-382
  • 86 Mattsson N, Andreasson U, Zetterberg H. et al. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol 2017; DOI: 10.1001/jamaneurol.2016.6117.
  • 87 Piehl F, Kockum I, Khademi M. et al. Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod. Mult Scler 2017; DOI: 10.1177/1352458517715132.
  • 88 Steinacker P, Semler E, Anderl-Straub S. et al. Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology 2017; 88: 961-969
  • 89 Weydt P, Oeckl P, Huss A. et al. Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 2016; 79: 152-158
  • 90 De Guio F, Jouvent E, Biessels GJ. et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab 2016; 36: 1319-1337
  • 91 Jokinen H, Schmidt R, Ropele S. et al. Diffusion changes predict cognitive and functional outcome: the LADIS study. Ann Neurol 2013; 73: 576-583
  • 92 Baykara E, Gesierich B, Adam R. et al. A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms. Ann Neurol 2016; 80: 581-592
  • 93 Mustanoja S, Meretoja A, Putaala J. et al. Outcome by stroke etiology in patients receiving thrombolytic treatment: descriptive subtype analysis. Stroke 2011; 42: 102-106
  • 94 Barnett HJ, Meldrum HE, Eliasziw M. et al. The appropriate use of carotid endarterectomy. CMAJ 2002; 166: 1169-1179
  • 95 Smith EE, Rosand J, Knudsen KA. et al. Leukoaraiosis is associated with warfarin-related hemorrhage following ischemic stroke. Neurology 2002; 59: 193-197
  • 96 Benavente OR, Coffey CS. et al. The SPS3 Study Group. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet 2013; 382: 507-515
  • 97 Rombach SM, Smid BE, Bouwman MG. et al. Long term enzyme replacement therapy for Fabry disease: effectiveness on kidney, heart and brain. Orphanet J Rare Dis 2013; 8: 47
  • 98 Rutten JW, Dauwerse HG, Peters DJ. et al. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept. Brain 2016; 139: 1123-1135
  • 99 Ngandu T, Lehtisalo J, Solomon A. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 2015; 385: 2255-2263
  • 100 Moll van Charante EP, Richard E, Eurelings LS. et al. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): a cluster-randomised controlled trial. Lancet 2016; 388: 797-805
  • 101 Ferro DA, van Veluw SJ, Koek HL. et al. Cortical cerebral microinfarcts on 3 Tesla MRI in patients with vascular cognitive impairment. J Alzheimers Dis 2017; 60: 1443-1450