Horm Metab Res 2018; 50(08): 627-639
DOI: 10.1055/a-0643-4739
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

Altered Glucose Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin Resistance and may Contribute to the Development of Type 2 Diabetes: A Combined PET/MR Study

Gretha J. Boersma
1   Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
,
Emil Johansson
2   Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
,
Maria J. Pereira
1   Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
,
Kerstin Heurling
2   Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
7   Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden
,
Stanko Skrtic
3   AstraZeneca, R & D, Gothenburg, Sweden
4   Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
,
Joey Lau
1   Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
5   Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
,
Petros Katsogiannos
1   Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
,
Grigorios Panagiotou
1   Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
,
Mark Lubberink
2   Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
,
Joel Kullberg
2   Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
6   Antaros Medical, Mölndal, Sweden
,
Håkan Ahlström
2   Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
6   Antaros Medical, Mölndal, Sweden
,
Jan W. Eriksson
1   Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
› Author Affiliations
Further Information

Publication History

received 28 February 2018

accepted 07 June 2018

Publication Date:
12 July 2018 (online)

Abstract

We assessed glucose uptake in different tissues in type 2 diabetes (T2D), prediabetes, and control subjects to elucidate its impact in the development of whole-body insulin resistance and T2D. Thirteen T2D, 12 prediabetes, and 10 control subjects, matched for age and BMI, underwent OGTT and abdominal subcutaneous adipose tissue (SAT) biopsies. Integrated whole-body 18F-FDG PET and MRI were performed during a hyperinsulinemic euglycemic clamp to asses glucose uptake rate (MRglu) in several tissues. MRglu in skeletal muscle, SAT, visceral adipose tissue (VAT), and liver was significantly reduced in T2D subjects and correlated positively with M-values (r=0.884, r=0.574, r=0.707 and r=0.403, respectively). Brain MRglu was significantly higher in T2D and prediabetes subjects and had a significant inverse correlation with M-values (r=–0.616). Myocardial MRglu did not differ between groups and did not correlate with the M-values. A multivariate model including skeletal muscle, brain and VAT MRglu best predicted the M-values (adjusted r2=0.85). In addition, SAT MRglu correlated with SAT glucose uptake ex vivo (r=0.491). In different stages of the development of T2D, glucose uptake during hyperinsulinemia is elevated in the brain in parallel with an impairment in peripheral organs. Impaired glucose uptake in skeletal muscle and VAT together with elevated glucose uptake in brain were independently associated with whole-body insulin resistance, and these tissue-specific alterations may contribute to T2D development.

Supplementary Material

 
  • References

  • 1 World Health Organization. Global Report on Diabetes. 2016
  • 2 Johansson E, Lubberink M, Heurling K, Eriksson JW, Skrtic S, Ahlström H, Kullberg J. Whole-body assessment of tissue-specific insulin sensitivity and body composition using an intergrated PET/MRI system. Radiology 2017; 25: 162949
  • 3 Judenhofer MS, Cherry SR. Applications for preclinical PET/MRI. Semin Nucl Med 2013; 43: 19-29
  • 4 Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, Gilardi MC, Frisoni G, Friston K, Ashburner J, Perani D. A standardized [18 F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 2014; 12: 575-593
  • 5 Iozzo P, Hallsten K, Oikonen V, Virtanen KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J, Nuutila P. Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: Evidence for a relationship with glycemic control. J Clin Endocrinol Metab 2003; 88: 2055-2060
  • 6 Hirvonen J, Virtanen KA, Nummenmaa L, Hannukainen JC, Honka MJ, Bucci M, Nesterov SV, Parkkola R, Rinne J, Iozzo P, Nuutila P. Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes 2011; 60: 443-447
  • 7 Tuulari JJ, Karlsson HK, Hirvonen J, Hannukainen JC, Bucci M, Helmiö M, Ovaska J, Soinio M, Salminen P, Savisto N, Nummenmaa L, Nuutila P. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese. Diabetes 2013; 62: 2747-2751
  • 8 EpiHealth. 2011;Available from https://www.epihealth.se accessed 15.11. 2016
  • 9 Alla Nya Diabetiker i Uppsala län (ANDiU). 2011; Available from http://www.andiu.se accessed 15.11. 2016
  • 10 DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214-E223
  • 11 Lindmark S, Burén J, Eriksson JW. Insulin resistance, endocrine function and adipokines in type 2 diabetes patients at different glycaemic levels: Potential impact for glucotoxicity in vivo. Clin Endocrinol 2006; 65: 301-309
  • 12 The International Commission on Radiation Units and Measurements. Tissue Substitutes in Radiation Dosimetry and Measurement, Report 44 In; Bethesda, MD, USA, 1989;
  • 13 Peltoniemi P, Lönnroth P, Laine H, Oikonen V, Tolvanen T, Grönroos T, Strindberg L, Knuuti J, Nuutila P. Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. Am J Physiol Endocrinol Metab 2000; 279: E1122-E1130
  • 14 Virtanen KA, Peltoniemi P, Marjamäki P, Asola M, Strindberg L, Parkkola R, Huupponen R, Knuuti J, Lönnroth P, Nuutila P. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis. Diabetologia 2001; 44: 2171-2179
  • 15 Wu HM, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME, Huang SC. Measurement of the global lumped constant for 2-deoxy-2-[18 F]fluoro-D-glucose in normal human brain using [15O]water and 2-deoxy-2-[18 F]fluoro-D-glucose positron emission tomography imaging. A method with validation based on multiple methodologies. Mol Imag Biol 2003; 5: 32-41
  • 16 Ng CK, Soufer R, McNulty PH. Effect of hyperinsulinemia on myocardial fluorine-18-FDG uptake. J Nucl Med 1998; 39: 379-383
  • 17 Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, Panzacchi A, Nobili F, Pappatà S, Marcone A, Garibotto V, Castiglioni I, Magnani G, Cappa SF, Gianolli L. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. NeuroImage Clin 2014; 6: 445-454
  • 18 Pereira MJ, Palming J, Rizell M, Aureliano M, Carvalho E, Svensson MK, Eriksson JW. mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes. Mol Cell Endocrinol 2012; 355: 96-105
  • 19 Smith U, Sjostrom L, Bjornstorp P. Comparison of two methods for determining human adipose cell size. J Lipid Res 1972; 13: 822-824
  • 20 Romacho T, Elsen M, Rohrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxford, England) 2014; 210: 733-753
  • 21 Lindmark S, Lönn L, Wiklund U, Tufvesson M, Olsson T, Eriksson JW. Dysregulation of the autonomic nervous system can be a link between visceral adiposity and insulin resistance. Obes Res 2005; 13: 717-728
  • 22 Svensson MK, Lindmark S, Wiklund U, Rask P, Karlsson M, Myrin J, Kullberg J, Johansson L, Eriksson JW. Alterations in heart rate variability during everyday life are linked to insulin resistance. A role of dominating sympathetic over parasympathetic nerve activity? Cardiovasc Diabetol 2016; 15: 91
  • 23 Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318: 34-43
  • 24 Gnudi L, Shepherd PR, Kahn BB. Over-expression of GLUT4 selectively in adipose tissue in transgenic mice: implications for nutrient partitioning. Proc Nutr Soc 1996; 55 1B 191-199
  • 25 Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med 2016; 280: 465-475
  • 26 Pereira MJ, Skrtic S, Katsogiannos P, Abrahamsson N, Sidibeh CO, Dahgam S, Månsson M, Risérus U, Kullberg J, Eriksson JW. Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors. Metabolism 2016; 65: 1768-1780
  • 27 Immonen H, Hannukainen JC, Iozzo P, Soinio M, Salminen P, Saunavaara V, Borra R, Parkkola R, Mari A, Lehtimäki T, Pham T, Laine J, Kärjä V, Pihlajamäki J, Nelimarkka L, Nuutila P. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol 2014; 60: 377-383
  • 28 Shadid S, Kanaley JA, Sheehan MT, Jensen MD. Basal and insulin-regulated free fatty acid and glucose metabolism in humans. Am J Physiol Endocrinol Metab 2007; 292: E1770-E1774
  • 29 Ng JM, Bertoldo A, Minhas DS, Helbling NL, Coen PM, Price JC, Cobelli C, Kelley DE, Goodpaster BH. Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance. J Clin Endocrinol Metab 2014; 99: E102-E106
  • 30 Goodpaster BH, Bertoldo A, Ng JM, Azuma K, Pencek RR, Kelley C, Price JC, Cobelli C, Kelley DE. Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 Diabetes: Studies with dynamic PET imaging. Diabetes 2014; 63: 1058-1068
  • 31 Luiken JJ, Coort SL, Koonen DP, van der Horst DJ, Bonen A, Zorzano A, Glatz JF. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch Eur J Physiol 2004; 448: 1-15
  • 32 Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E, Camici PG. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes 2002; 51: 3020-3024
  • 33 Kim G, Jo K, Kim KJ, Lee YH, Han E, Yoon HJ, Wang HJ, Kang ES, Yun M. Visceral adiposity is associated with altered myocardial glucose uptake measured by (18)FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes. Cardiovasc Diabetol 2015; 14: 148
  • 34 Paternostro G, Camici PG, Lammerstma AA, Marinho N, Baliga RR, Kooner JS, Radda GK, Ferrannini E. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Investig 1996; 98: 2094-2099
  • 35 Peterson LR, Soto PF, Herrero P, Mohammed BS, Avidan MS, Schechtman KB, Dence C, Gropler RJ. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imag 2008; 1: 424-433
  • 36 Peterson LR, Soto PF, Herrero P, Schechtman KB, Dence C, Gropler RJ. Sex differences in myocardial oxygen and glucose metabolism. J Nuc Cardiol 2007; 14: 573-581
  • 37 Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004; 109: 2191-2196
  • 38 Wang CX, Fu KL, Liu HJ, Xing F, Zhang SY. Spontaneous brain activity in type 2 diabetics revealed by amplitude of low-frequency fluctuations and its association with diabetic vascular disease: A resting-state FMRI study. PloS One 2014; 9: e108883
  • 39 Cui Y, Jiao Y, Chen YC, Wang K, Gao B, Wen S, Ju S, Teng GJ. Altered spontaneous brain activity in type 2 diabetes: A resting-state functional MRI study. Diabetes 2014; 63: 749-760
  • 40 Cui Y, Liang X, Gu H, Hu Y, Zhao Z, Yang XY, Qian C, Yang Y, Teng GJ. Cerebral perfusion alterations in type 2 diabetes and its relation to insulin resistance and cognitive dysfunction. Brain Imag Behav 2016; 11: 1248-1257
  • 41 Aiello M, Salvatore E, Cachia A, Pappatà S, Cavaliere C, Prinster A, Nicolai E, Salvatore M, Baron JC, Quarantelli M. Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid scanner study. NeuroImage 2015; 113: 111-121
  • 42 Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI, Gauthier l, Pellerin L, Hamel E, Rosa-Neto P. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosc 2017; 20: 393-395
  • 43 Chen G, Shi L, Cai L, Lin W, Huang H, Liang J, Li L, Lin L, Tang K, Chen L, Lu J, Bi Y, Wang W, Ning G, Wen J. Comparison of insulin resistance and β-cell dysfunction between the young and the elderly in normal glucose tolerance and prediabetes population: A prospective study. Horm Metab Res 2017; 49: 135-141
  • 44 Huang YC, Hsu CC, Lin WC, Yin TK, Huang CW, Wang PW, Chang HH, Chiu NT. Effects of metformin on the cerebral metabolic changes in type 2 diabetic patients. Sci World J 2014; 694326