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ABSTRACT

Plants are sessile organisms. Therefore, they developed the

capacity to quickly respond to biotic and abiotic environmen-

tal stresses, for instance by producing a broad spectrum of

bioactive specialized metabolites. In this defense response,

the jasmonate phytohormones can instigate a signaling cas-

cade that leads to the specific elicitation and reprograming

of numerous metabolic pathways. Recent research progress

has provided several insights into the regulatory networks of

many specialized metabolic pathways, mainly at the tran-

scriptional level. Nonetheless, our view on the regulation of

defense metabolism remains far from comprehensive. Here,

we describe the recent advances obtained with regard to one

aspect of the regulation of plant specialized metabolism,

namely the posttranslational regulation of enzyme stability.

We focus on terpenoid biosynthesis and in particular on the

rate-limiting and well-investigated enzyme of the terpenoid

precursor pathway, 3-hydroxy-3-methylglutaryl-coenzyme A

reductase (HMGR). There are clear similarities, as well as im-

portant mechanistic differences, among the components in-

volved in the posttranslational regulation of terpenoid biosyn-

thesis via HMGR in plants, yeasts, and mammals. Further-

more, in plants, several of these components evolved to re-

spond to specific signaling cues. Indeed, the elements of the

plant endoplasmic reticulum-associated degradation (ERAD)

and ER stress-associated processes can be induced upon envi-

ronmental stresses and during specific developmental pro-

cesses, thereby allowing a unique posttranslational regulation

of terpenoid biosynthesis pathways.

Review: Endoplasmic Reticulum-Associated Degradation (ERAD)-
Dependent Control of (Tri)terpenoid Metabolism in Plants

Reviews
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Introduction
Plants are stationary by nature. Consequently, they are constantly
challenged, often coping with biotic and abiotic stresses. There-
fore, metabolic plasticity is crucial for their survival. A good exam-
ple of this flexibility is the production of a myriad of bioactive spe-
cialized metabolites such as terpenoids, alkaloids, and phenolic
compounds [1]. This review focuses on the terpenoids (also
known as isoprenoids), which belong to a functionally and struc-
turally diverse class of molecules with tens of thousands of differ-
ent identified members in existing plant species and can be either
widespread or restricted to a specific species or taxa. Numerous
terpenoids can be considered essential, because they play a cru-
874 Erffelinck ML
cial role in environmental adaptation, plant defense, and plant-en-
vironment interaction. For instance, they can serve as attractants
for pollinators or seed-dispersing animals and repellents for herbi-
vores or pathogens [2].

Terpenoids such as phytosterols, carotenoid pigments, elec-
tron transport chain components (quinones), and signaling mole-
cules including gibberellins, ABA, BR, cytokinins, strigolactones,
and phytoecdysteroids are associated with primary metabolism,
regulating plant growth and development, photosynthesis, mem-
brane permeability, and fluidity and are therefore occurring in all
plant species [3–8].

Economically, many specialized terpenoids have beneficial
properties for humans and are currently used for clinical purposes
, Goossens A. Review: Endoplasmic Reticulum-Associated… Planta Med 2018; 84: 874–880



ABBREVIATIONS

ABA abscisic acid

bHLH basic helix-loop-helix

BiPs binding proteins

BIS basic helix-loop-helix (bHLH) iridoid synthesis

BR brassinosteroids

bZIP basic leucine-zipper

DMAPP dimethylallyl pyrophosphate

Doa10 degradation of alpha 10

DRY2 drought hypersensitive 2

ER endoplasmic reticulum

ERAD endoplasmic reticulum-associated degradation

ERQC ER protein quality control

FPP farnesyl pyrophosphate

GGOH geranylgeraniol

GGPP geranylgeranyl pyrophosphate

gp78 glycoprotein 78

HMGR 3-hydroxy-3-methylglutaryl-coenzyme A

reductase

HMG‑CoA HMG-coenzyme A

HR hypersensitive response

HRD HMGR degradation

IPP isopentenyl pyrophosphate

IRE1 inositol-requiring protein 1

JA jasmonic acid or jasmonate

lew1 leaf wilting 1

MEP 2-C-methyl-D-erythritol 4-phosphate

MKB1 makibishi 1

MVA mevalonic acid or mevalonate

MYC bHLH transcription factor

NAC no apical meristem (NAM), Arabidopsis thaliana

activating factor 1 and 2 (ATAF1 and -2), and

cup-shaped cotyledon (CUC2)

OSER organized smooth ER

P450 cytochrome P450s

RING really interesting new gene

SA salicylic acid

SAR systemic acquired resistance

SSD sterol-sensing domain

SQE squalene monooxygenase

SUD1 suppressor of DRY2 effects 1

TSAR triterpene saponin biosynthesis activating

regulator

UbiA polyubiquitin

UBIAD1 UbiA prenyltransferase domain-containing

protein-1

UDP uridine diphosphate

UPR unfolded protein response
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[9–14]. Among these terpenoids are the anticancer agent pacli-
taxel (taxol), which is a naturally occurring diterpenoid produced
by Taxus brevifolia Nutt. (Coniferae) and T. baccata L. (Coniferae)
and the antimalarial agent artemisinin, a sesquiterpenoid lactone
from Artemisia annua L. (Asteraceae) [15–17]. The nonfood indus-
Erffelinck ML, Goossens A. Review: Endoplasmic Reticulum-Associated… Planta Med 2018; 84:
try uses latex, extracted from Hevea brasiliensis Müll.Arg. (Euphor-
biaceae) or the rubber tree, the main source of natural rubber for
the production of tiers, tubing, elastics, and toys [18]. Another
highly valued terpenoid in the flavor industry is the diterpenoid
menthol produced by Mentha x piperita L. (Lamiaceae) [19,20].

Despite their structural variability, all terpenoids are composed
of a set amount of five-carbon (C5) isoprene (2-methyl-1,3-buta-
diene) units, corresponding to their classes [21]. The biochemical-
ly active forms of isoprene are IPP and its allylic isomer DMAPP,
both biosynthesized by two compartmentalized core pathways
[22], the MVA pathway that operates in the cytosol, the ER and
peroxisomes, and the MEP pathway that takes place in the plastids
[23–29]. Plants uniquely harbor both pathways, although there is
a set allocation of the two pathways among the different king-
doms of life [30]. In essence, in higher plants, the MVA pathway
is responsible for the biosynthesis of the sesqui- and triterpenoids
(C15, C30) and the MEP pathway for the formation of mono-, di-,
some sesquiterpenoids (C10, C20, C15), and plastoquinones [31].

To date, multiple studies have focused on the regulation of the
core terpenoid biosynthesis reactions, in particular the rate-limit-
ing ER-localized enzyme of the MVA pathway HMGR, mainly to de-
cipher the control of the biosynthesis of specific end-products of
the pathways [8]. This review will focus on posttranslational regu-
lation of enzymes that are involved in terpenoid precursor biosyn-
thesis as well as the pathway branches leading to the production
of specialized metabolites and in particular the triterpenoids of
which the biosynthetic enzymes are predominantly localized in
the ER. Consequently, ER-centralized regulation of enzyme stabil-
ity executed by ERAD machinery and its associated processes play
an essential role in the regulation of these metabolic pathways.
Biosynthesis of Triterpenoids
at the ER Membrane

The class of triterpenoids (C30) in plants comprises primary me-
tabolites such as phytosterols and BR and the specialized metabo-
lites called saponins that serve as defense compounds against
pathogens and herbivores [10].

Triterpenoid saponin biosynthesis starts in the cytosol with the
“head-to-tail” condensation of two IPP units with one DMAPP
unit, generating FPP. All consecutive biosynthesis steps towards
triterpenoid saponins take place at the ER membrane. Two FPPs
fuse “head-to-head” to form linear squalene, catalyzed by squa-
lene synthase. Squalene is subsequently epoxidized by squalene
monooxygenase (SQE) to 2,3-oxidosqualene, the last common in-
termediate in saponin and sterol biosynthesis. 2,3-oxidosqualene
is further cyclized by specific oxidosqualene cyclases to either cy-
cloartenol, the plant sterol precursor, or other cyclization prod-
ucts that are further oxidized by one or more P450s to form a wide
variety of specific triterpenoid backbones or sapogenins. Finally,
these sapogenins are further decorated by covalent attachment
of sugar moieties by UDP-dependent glycosyltransferases, there-
by further increasing the structural diversity of this metabolite
class [32,33]. For a complete overview of the triterpenoid biosyn-
thesis in plants, we refer to Thimmappa et al. (2014) [34].
875874–880
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The amphipathic nature of triterpenoid saponins gives them
economically valuable properties. For instance, saponin extracts
from Quillaja saponaria Molina (Quillajaceae) have been used as
emulsifiers and industrial soaps in the nonfood industry [35–39].
Furthermore, extracts of Glycyrrhiza glabra L. (Fabaceae) and
Panax ginseng Baill. (Araliaceae), which contain glycyrrhizin and
ginsenoside saponins, respectively, are commonly used as herbal
medicines [40–42]. Glycyrrhizin is also used as natural sweetener
in the food industry [43].
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Transcriptional Regulation
of Terpenoid Biosynthesis

Biologically, biosynthesis of plant triterpenoid saponins is con-
trolled by a signaling cascade wherein the oxylipin-derived JA phy-
tohormone is the protagonist [44–46]. In the last years, much ef-
fort has been made to identify transcription factors that control
the terpenoid biosynthesis upon JA perception. First, a bHLH tran-
scription factor MYC2 has been shown to control the sesquiterpe-
noid biosynthesis in Arabidopsis thaliana L.Heynh (Brassicaceae),
Solanum lycopersicum L. (Solanaceae), and A. annua [47–50].
Shortly thereafter, two MYC2-unrelated bHLH transcription fac-
tors were identified in Cucumis sativus L. (Cucurbitaceae) that reg-
ulate the production of cucurbacitins [51]. Furthermore, in Ca-
tharanthus roseus (L.) G. Don (Apocynaceae), two bHLH transcrip-
tion factors, bHLH iridoid synthesis 1 and 2, have been shown to
induce the monoterpenoid branch of the monoterpenoid indole
alkaloid pathway [52].

Recently, mechanisms that specifically control triterpenoid
biosynthesis have also been identified. For example, in Medicago
truncatula Gaertn. (Fabaceae), bHLH transcription factors TSAR1
and TSAR2, homologs of BIS1 in C. roseus, and therefore also un-
related to MYC2, were found to boost the nonhemolytic and he-
molytic triterpenoid saponin biosynthesis, respectively [53,54].
BIS and TSAR homologs also control the production of antinutri-
tional triterpenoid saponins in quinoa seeds and soyasaponins in
Glycyrrhiza uralensis Fisch. Ex DC. (Fabaceae) [55,56].
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Posttranslational Regulation of Enzyme
Stability of the Terpenoid Biosynthetic
Pathways in Plants

Substantial effort has been made to identify regulatory enzymes
of the IPP precursor pathways and their mode of action [8,57,
58]. One particular enzyme, HMGR, received much attention and
is therefore the best-characterized enzyme of the MVA pathway in
plants, yeasts, and mammals until now [59]. Because terpenoids
are produced by all free-living organisms, it is not surprising that
some regulatory and structural features of HMGR in the MVA
pathway have been conserved and might have undergone parallel
and functional evolution to cope with certain situations or suit
specific requirements of organisms [60].

The mammalian genome and that of the fission yeast
Schizosaccharomyces pombe contain only one gene encoding
876 Erffelinck ML
HMGR, whereas the genome of the budding yeast Saccharomyces
cerevisiae harbors two isozymes, and in all plant species studied so
far, HMGR is encoded by a multigene family [26,61–66].

All eukaryotic HMGRs are targeted to the ER and consist of an
N-terminal membrane domain with low sequence similarity, a C-
terminal catalytic domain that is highly conserved and localized at
the cytosolic site of the ER membrane, and a nonconserved flexi-
ble linker connecting the two [67]. Plant and mammalian HMGR is
tetrameric, as a result of the oligomerization potential of the cat-
alytic domain [68,69]. Roitelman et al. (1992) predicted that the
membrane domain of mammalian HMGR contains eight trans-
membrane sequences, contrasting with the model of Chin et al.
(1982), wherein HMGR spans the membrane seven times. A simi-
lar eight membrane-span model was predicted for yeast HMGR
[67,70,71]. In plants, HMGR only contains two transmembrane
domains [26,61, 72] (▶ Fig. 1A–C). The mechanisms by which
yeast and mammalian HMGR are regulated at multiple levels are
profoundly described in a review by John S. Burg [73]. In this re-
view, we will elaborate on the posttranslational control of HMGR
activity by degradation.

The membrane domain of HMGR in mammals and HMG2 in
S. cerevisiae is necessary for accelerated sterol or nonsterol (end-
products of the MVA pathway) feedback regulation by ERAD using
the same machinery that is responsible for the elimination of im-
properly folded secretory proteins by proteasomal degradation
[71,74,75]. Both HMGR in mammals and HMG2 in S. cerevisiae
contain a SSD in the N-terminal membrane domain, consisting of
five consecutive transmembrane spans [76,77]. In mammals, it is
this SSD that binds to Insig-1, an ER-retention protein, resulting in
accelerated HRD by the gp78 machinery triggered by 24,25-dihy-
drolanosterol or oxysterol [78–81]. Furthermore, the nonsterol
isoprenoid GGOHmay act as an enhancer of degradation of mam-
malian HMGR by promoting the extraction of the ubiquitinylated
HMGR from the ER, thereby facilitating degradation by the pro-
teasome [82].

Likewise, two lipid signals control the rate of HMG2P turnover
through ERAD, using the HRD machinery in S. cerevisiae [70, 83].
GGPP may act by altering the conformation of the membrane do-
main of HMG2P and thereby inducing Insig-independent HRD-
mediated degradation of its incorrectly folded version and thus
maintaining the lipid homeostasis in the cell [84]. An oxysterol-
derived signal can further enhance the MVA-derived signal-in-
duced degradation (▶ Fig. 1A,B) [85]. A similar signal controlling
the degradation of HMG1 in S. pombe remains to be discovered.

Furthermore, the ERAD E3 ubiquitin ligase Doa10 and TEB4
machinery in yeasts and mammals, respectively, are responsible
for the sterol-dependent degradation of SQE to prevent accumu-
lation of toxic sterol intermediates [86]. In plants, an analogous
mechanism to target SQE has not been discovered yet.

Recently, it was discovered in mammals that sterols stimulate
binding of UBIAD1, which uses GGPP to synthesize vitamin K2, to a
subset of HMGR, thereby inhibiting ERAD [87]. GGPP can trigger
the release of UBIAD1 from HMGR, thereby enabling ERAD. This
UBIAD1-dependent HMGR control system allows sterol-replete
cells to synthetize MVA for the replenishment of GGPP [88].

That HMGR is also modulated at all levels in plants is reflected
by the lack of correlation between enzyme activity, mRNA levels,
, Goossens A. Review: Endoplasmic Reticulum-Associated… Planta Med 2018; 84: 874–880



▶ Fig. 1 Regulated degradation of HMGR in mammals (A), yeasts
(S. cerevisiae) (B), and plants (M. truncatula) (C). A In the absence of
sterols, HMGR does not bind Insig. In the presence of 24,25-dihy-
drolanosterol or oxysterols, Insig promotes ubiquitinylation (Ub)
and proteasomal-dependent degradation of HMGR through se-
quential interactions with the E2 ubiquitin-conjugating enzyme
Ubc7, the E3 ubiquitin ligase gp78, the ATPase VCP/p97, the SPFH
domain-containing protein member 2 (SPFH2), and transmem-
brane and ubiquitin-like domain-containing protein 1 (TMUB1).
GGOH possibly enhances the mammalian HRD by a mechanism
downstream of ubiquitinylation. B GGPP induces a conformational
change of HMG2P, thereby promoting recognition and ubiquitiny-
lation by the HRD complex. HRDP3P is responsible for substrate
recognition and delivery. HRD1P employs two E2 ubiquitin-conju-
gating enzymes: the primary soluble Ubc7p and Ubc1p. Ubc7p in-
teracts with the membrane through the integral membrane protein
Cue1p. Usa1p functions in the self-regulation of HRD1P. Ubx2p is
responsible for the recruitment of the Cdc48p/Npl4p/Ufd1p ATPase
complex, thereby catalyzing retrotranslocation of luminal and
membrane-bound HRD substrates. An oxysterol-derived signal can
also regulate HMG2P activity. C Coinciding with high triterpenoid
saponin levels, HMGR is recruited to the MKB1 E3 ubiquitin ligase
complex for ubiquitinylation and subsequent proteasomal-depen-
dent degradation in M. truncatula.
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and protein content [26,89–92]. At the posttranslational level,
plant HMGR activity can be controlled through noncovalent inter-
actions with metabolic intermediates such as sterols, saponins,
ABA, ubiquinone, and 4-hydroxybenzoic acid, but their mode of
action awaits discovery [93]. Also, covalent modifications such as
phosphorylation, glycosylation, and ubiquitinylation followed by
proteasomal degradation can control HMGR activity [94–100].
Erffelinck ML, Goossens A. Review: Endoplasmic Reticulum-Associated… Planta Med 2018; 84:
Several observations support that an analogous type of proteaso-
mal-dependent degradative control of HMGR in mammals and
yeasts is also exerted in plants following diverse developmental
and environmental cues, but the mode of action is still limitedly
understood, even for a well-investigated enzyme such as HMGR.
For example, in pea, HMGR activity declines rapidly when etio-
lated seedlings are irradiated with red light, which suggests that
phytochrome-mediated signaling indirectly controls HMGR activ-
ity through a posttranslational mechanism [93]. Also, the linker
region between the membrane domain and the catalytic domain
of plant HMGR is rich in so-called PEST (Pro, Glu [and Asp], Ser,
Thr) amino acids, which have been shown to be responsible for
the turnover of ER-located proteins possibly by proteasomal deg-
radation [101]. Contrarily, the membrane domain of plant HMGR
is fairly small compared to HMGR in yeasts and mammals and
does not contain a SSD, and plants do not express an ortholog of
the ER-resident Insig-1 protein [61].

Nevertheless, in M. truncatula, a system that monitors the ac-
cumulation of bioactive triterpenoid saponins to secure plant de-
velopment and integrity by turnover of HMGR was recently char-
acterized. In particular, MKB1, a RING membrane-anchor E3 ubiq-
uitin ligase without sequence homology to the yeast HRD and
mammalian gp78 E3 ligases, was found to act as a posttransla-
tional regulator of HMGR [102]. MKB1 recruits the ERAD system
to regulate HMGR activity by controlling protein stability and
hence the amount of saponin precursors generated via the MVA
pathway (▶ Fig. 1C). Therefore, silencing of MKB1 leads to an un-
controlled accumulation of monoglycosylated saponins and an
aberrant root morphology.

Contrarily, SUD1, which is homologous in sequence and struc-
ture to the yeast Doa10 and human TEB4, was characterized as a
positive posttranslational regulator of HMGR activity in A. thaliana
[103]. In yeasts and mammals, the HDR and gp78 machinery, re-
spectively, regulate HMGR activity by controlling protein stability,
whereas SUD1 controls HMGR activity without changing the pro-
tein content but possibly by degrading a negative regulator of
HMGR.

Besides clear similarities, there are also important mechanistic
differences among the components involved in the terpenoid reg-
ulation through HMGR in plants, yeasts, and mammals. The non-
conserved regions of plant HMGR may have steered the evolution
of a specific control mechanism for HMGR activity, possibly regu-
lated by specific saponins, their intermediates or plant-specific
mediator proteins, since plants do not encode Insigs or Insig-like
homologs. Identification of such mediators will be important for
the understanding of this plant-specific degradative HMGR activ-
ity control mechanism. MKB1 possibly also targets other proteins
than HMGR, such as P450s, SQE, chaperones, or regulators to pro-
tect itself against its own defense strategies.

In mammals for example, the ER-anchored hepatic P450s me-
tabolize endo- and xenobiotics. Such agents can positively control
liver P450 protein levels by increased synthesis or negatively via
inactivation or degradation. Recently, an ERAD-dependent con-
trol mechanism using gp78 and C-terminus of Hsc70-interacting
protein to target CYP3A4, the major human liver/intestinal P450,
and the fast-turnover liver CYP2E1 for degradation, has been de-
877874–880
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scribed [104]. Likewise, it is possible that also in plants such regu-
lators exist that target ER-located proteins such as P450s.

The membrane domain of plant, mammalian, and yeast HMGR
is not only a determinant of its own turnover; it is also responsible
for the morphology of its residency, the ER. The ER is a dynamic
net of tubules, sheets and cisternae harboring terpenoid biosyn-
thetic enzymes and the machinery controlling them. The constel-
lation of the ER net and its tenants may vary, depending on the
cellular demands. For example, gland cells in plants require an in-
creased ER net to accommodate the production of terpenoids
[105]. Likewise, the biosynthesis of steroid hormones requires an
expanded ER in mammalian adrenocortical cells [106].

This ER expansion, also called ER hypertrophy, was first discov-
ered in compactin (competitive inhibitor of reductase)-resistant
Chinese hamster ovary UT-1 cells that were obtained by stepwise
adaptation to grow at an increased concentration of compactin
[107]. These cells generated crystalloid ER membranes consisting
of hexagonal or cubical tubules/sheets [107–110].

Also, in S. cerevisiae a similar phenomenon was described.
Overexpression of HMG1P resulted in the proliferation of karmel-
lae, which are stacked cisternae on the outer nuclear envelope,
whereas overexpression of HMG2P leads to the formation of pe-
ripheral ER membrane stacks and short karmellae [69,111,112].
All of these structures are categorized as OSER [113]. Although
the mechanisms and signals that trigger this ER proliferation are
to date still unknown, the membrane-spanning domains six and
seven in yeast and mammal HMGR determine the ER morphogen-
esis potential, thereby regulating the catalytic activity of the C-
terminal domain [112]. Nevertheless, a properly folded catalytic
domain is indispensable to induce OSER biogenesis [69]. A. tha-
liana encodes three HMGR isoforms. HMG1 encodes HMGR1S
and HMGR1L, the latter which holds a 50-amino acid residue ex-
tension at the N-terminus, whereas HMG2 encodes HMGR2. Ex-
pression of the membrane domain of HMGR1S and HMG2 leads
to the reversible proliferation and morphogenesis of the ER in
every cell type of diverse plant species [114]. Apparently, an N-
terminal Arg-motif does not only serve as an ER-retention signal
but it is also a requisite to trigger the biogenesis of OSER in plants
[114].
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The Regulatory Role of ERAD and
Associated Processes and Signals that
Activate or Modulate Them in Plants

Nearly one-third of the newly synthesized proteins allocated to
the secretory pathway in the ER are misfolded. Therefore, a highly
efficient ERQC mechanism is responsible to secure correct folding
and removal by ERAD in case the proteins do not meet the confor-
mational standard [115–119]. This process consists of four steps,
namely recognition by E3 ubiquitin ligases embedded in the ER,
ubiquitinylation, dislocation from the ER, and ultimately degrada-
tion of the ubiquitinylated folding-defective proteins by the 26S
proteasome in the cytosol [116].

Adverse environmental conditions or certain developmental
stages can trigger the accumulation of unfolded and misfolded
878 Erffelinck ML
proteins in the ER [120]. This imposed ER stress may elicit a con-
served UPR, which consists of specific transcriptional and transla-
tional regulatory cascades that bring the ER folding capacity in
line with demands by for example reducing the synthesis of se-
creted or membrane proteins or by increasing folding-assisting
proteins such as chaperones and foldases or other components
of the ERQC system.

ERQC, ERAD, or UPR deficiencies in plants can lead to an in-
creased sensitivity to environmental stresses or an inadequate de-
velopment. In the following sections, we will discuss the hitherto
studied players in plant ERAD and ER stress-associated processes,
their link to terpenoid biosynthesis regulation, and their involve-
ment towards biotic and abiotic stresses and development.

ER Stress Response and Biotic Stress

Biotic stress triggers signaling molecules such as the plant hor-
mones SA and JA to elicit a downstream defense response [121].
For instance, SA activates resistance against biotrophic pathogens
by inducing a HR and SAR [122], whereas JAs activate a defense
response against herbivorous insects and necrotrophic pathogens
by the production of anti-insect proteins [123] and vegetative
storage proteins [124] or specialized metabolites such as terpe-
noids, polyamines, quinones, alkaloids, phenylpropanoids, and
glucosinolates [44,45]. Depending on the situation, the interde-
pendent SA- and JA-signaling pathways can work synergistically
or antagonistically through modulation by other hormones
[125–127].

Plants harbor several ER-localized stress sensors and trans-
ducers such as the bZIP transcription factors bZIP28, bZIP17, and
bZIP60, the NAC transcription factors NAC062 and NAC089, and
the RNA-splicing enzyme IRE1. Upon pathogen infection, IRE1 is
activated by a still unknownmechanism, thereby enabling splicing
of bZIP60 mRNA, resulting in the translation of an active form of
bZIP60 that translocates to the nucleus, where it induces an ER
stress response (▶ Fig. 2). The IRE1a mutant in A. thaliana, which
is deficient in bZIP60 mRNA splicing, is more sensitive to patho-
gen infection and is defective in establishing SAR [128]. Likewise,
in Nicotiana benthamiana Domin. (Solanaceae), silencing of
bZIP60 resulted in plants that are more susceptible to Pseudomo-
nas cichorii infection [129].

The link between the SAR and secretory pathway was further
reinforced by the observation that an A. thaliana mutant in BiP2,
encoding a highly abundant ER-luminal heat shock protein 70
chaperone, was impaired in the induction of the SA-responsive
gene PR1 [130]. It is possible that upon biotrophic pathogen-in-
duced stress, the UPR is steering a SA response, thereby antago-
nizing a JA-response and thus also the production of specialized
metabolites, including terpenoids.

ER Stress Response and Abiotic Stress

BiPs can also play a role in abiotic stress responses. Overexpress-
ing BiPs in soybean or tobacco confers drought tolerance, possibly
as the result of a dynamic interplay between drought stress re-
sponses and UPR [131,132]. For example, a lew1mutant in A. tha-
liana, encoding a cis-prenyltransferase for the synthesis of doli-
chols, which are long-chain unsaturated polyterpenoids, showed
a leaf-wilting phenotype under normal growth conditions [133].
, Goossens A. Review: Endoplasmic Reticulum-Associated… Planta Med 2018; 84: 874–880



▶ Fig. 2 A stylistic representation of the UPR in plants. When acti-
vated, by a still unknown mechanism, plant IRE1 splices out a 23-
base intron of bZIP60 mRNA, inducing in a frame shift that results in
the elimination of the transmembrane domain of the bZIP60p and
thereby targeting active bZIP60 to the nucleus to induce expression
of UPR genes. In a second mechanism, upon salt or heat stress,
bZIP17/28 relocates to the nucleus through the Golgi where it is
sequentially cleaved by the transcription factor peptidases, Site-2-
proteases 1 and 2, to induce the transcription of several UPR genes.
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Dolichols promote protein trafficking in the ER by carrying sugars
for protein glycosylation. Consequently, a mutation in lew1 can
cause a loss of membrane integrity and reduced protein glycosy-
lation. Drought stress resulted in higher expression of the UPR
genes BiP and bZIP60 and earlier expression of the abiotic stress-
responsive genes Cold Regulated 47 and Cold Regulated 29A in the
lew1 mutant. This implicates that lew1 links the MVA-dependent
dolichol biosynthesis, the UPR pathway, and the abiotic stress re-
sponse in Arabidopsis.

Furthermore, it has been shown in A. thaliana that the UPR can
also be involved in the high salt or heat stress response. Upon heat
stress, bZIP28 relocates from the ER to the nucleus through the
Golgi, where it is cleaved and activated by the sequential action
of the peptidases Site-2-protease 1 and 2 [134,135]. A similar ac-
tivation mechanism is triggered for bZIP17 upon salt stress
(▶ Fig. 2) [136]. Mutating A. thaliana S2P impaired proteolytic ac-
tivation and nuclear relocation of bZIP17 and bZIP28 [137].

Recently, a link was found between ER stress signaling, stress
acclimatization, and BRs, which are terpenoid signaling molecules
involved in growth and development. Abiotic stress can disable
maturation and translocation of brassinosteroid insensitive 1, a
leucine-rich repeat receptor kinase, from the endomembrane to
the plasmamembrane, implicating that S2P-activated bZIPs can
steer brassinosteroid insensitive 1 delivery to the plasma mem-
brane and directly regulate BR signaling required for stress accli-
matization and growth [137].
Erffelinck ML, Goossens A. Review: Endoplasmic Reticulum-Associated… Planta Med 2018; 84:
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Deficiencies in the ERQC, ERAD, or UPR machinery can cause
slower growth and sometimes even sterility. For example, A. tha-
liana S2P can control root development through BR signaling
[137]. Furthermore, A. thaliana S2P monitors bZIP17 activation
and therefore controls the expression of negative regulators of
ABA signaling, enabling S2P to desensitize ABA signaling during
seed germination [138]. Furthermore, a short root phenotype
was observed in double ire1a ire1b mutants, suggesting that the
UPR machinery can influence root development in normal condi-
tions [139,140].
Concluding Remarks and Perspectives
The past few years have yielded remarkable progress in our under-
standing of the molecular details underlying the posttranslational
regulation of terpenoid biosynthesis through modulation of en-
zyme stability. However, the acquired insights are mostly limited
to HMGR, the rate-limiting enzyme of the MVA-dependent IPP
precursor pathway. Although there are important mechanistic dif-
ferences across eukaryotic species in the regulatory control of this
extremely conserved protein, there are also clear similarities. The
signals that trigger each mode of regulation, although different in
their exact identity, may be considered analogous in mammals,
yeasts, and plants. Regulated degradation of HMGR seems indeed
associated with a lipid signal: 24,25-dihydrolanosterol and an oxy-
sterol in mammals, GGPP and oxysterols in yeasts and a yet un-
known terpenoid intermediate in plants. The mechanistic differ-
ences may be caused by the divergent regions of HMGR in eukary-
otes. As such, evolution may have allowed plants to develop mul-
tiple and plant-specific control mechanisms for HMGR activity and
stability, possibly controlled by plant-specific triterpenoids, their
intermediates, and/or by plant-specific protein mediators. For in-
stance, orthologs of the HMGR-binding Insigs or Insig-like chaper-
ones, conserved between yeasts and mammals, are not present in
plants. Furthermore, it is possible that additional regulators, such
as plant-specific E3 ubiquitin ligases, are able to target other ER-
localized proteins than HMGR (e.g., triterpenoid biosynthesis en-
zymes such as SQE or P450s). This could be an ingenious system
for plants to guarantee survival in a hostile environment while
simultaneously ensuring protection against their own defense
mechanism when being attacked. It will be of utmost importance
to gain more knowledge about the posttranslational regulatory
mechanism of the proteasome-dependent degradation of HMGR
and the mechanisms that control the more downstream enzymes
of the terpenoid biosynthesis pathway in plants. There are indica-
tions of involvement of ERAD and its associated processes such as
the UPR in the regulation of terpenoid biosynthesis. Many mem-
bers of the ERAD and associated mechanisms are responsive to
environmental stresses and show engagement in certain develop-
mental processes linked to terpenoid metabolism. Unraveling the
links between the ERAD machinery, the ER stress response, and
that of terpenoid metabolism can represent a major advance in
the elucidation of plant hormonal and metabolic regulatory net-
works.
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