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ABSTRACT

Plants have always been used as medicines since ancient

times to treat diseases. The knowledge around the active

components of herbal preparations has remained neverthe-

less fragmentary: the biosynthetic pathways of many second-

ary metabolites of pharmacological importance have been

clarified only in a few species, while the chemodiversity

present in many medicinal plants has remained largely un-

explored. Despite the advancements of synthetic biology for

production of medicinal compounds in heterologous hosts,

the native plant species are often the most reliable and eco-

nomic source for their production. It thus becomes funda-

mental to investigate the metabolic composition of medicinal

plants to characterize their natural metabolic diversity and to

define the biosynthetic routes in planta of important com-

pounds to develop strategies to further increase their con-

tent. We present here a number of case studies for selected

classes of secondary metabolites and we review their health

benefits and the historical developments in their structural

elucidation and characterization of biosynthetic genes. We

cover the cases of benzoisoquinoline and monoterpenoid in-

dole alkaloids, cannabinoids, caffeine, ginsenosides, withano-

lides, artemisinin, and taxol; we show how the “early” bio-

chemical or the more recent integrative approaches–based

on omics-analyses–have helped to elucidate their metabolic

pathways and cellular compartmentation. We also summarize

how the knowledge generated about their biosynthesis has

been used to develop metabolic engineering strategies in het-

erologous and native hosts. We conclude that following the

advent of novel, high-throughput and cost-effective analytical

technologies, the secondary metabolism of medicinal plants

can now be examined under the lens of systems biology.

The Integration of Metabolomics and Next-Generation Sequencing
Data to Elucidate the Pathways of Natural Product Metabolism in
Medicinal Plants
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Introduction
The first archeological evidences of the use of herbal remedies
date back to prehistory: Neanderthals, for example, who have
been long considered mainly meat-eaters, had instead already a
good knowledge of the surrounding vegetation and adopted so-
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
phisticated diets: their dental plaques contained residues of sev-
eral herbs, indicating the early consumption of plants, perhaps al-
ready for self-medication purposes [1].

Written records of the use of medicinal plants–including rec-
ipes for preparing decocts and extracts–were also common in
Ancient Egypt, Greece, Rome, China, and in the Middle East.
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During the modern era, a more rational approach began to be
applied to the study of herbal medicines, as was the case with the
discovery of the properties of foxglove (Digitalis purpurea L., family
Plantaginaceae) to treat edema and heart failures [2,3].

Since the beginning of the 19th century, in parallel with the de-
velopment of the pharmaceutical industry, there was an impetus
in the isolation of new compounds possessing a therapeutic or
commercial potential. In 1805, morphine was isolated from the
latex of opium poppies and went immediately into commercial
production in Europe and the United States, where it soon
reached widespread popularity as a pain relief medication [4].
After the discovery of morphine, many other compounds with
therapeutic effects were isolated and purified from plants.

The botanical drugs we use today, like the ancient herbal rem-
edies, are all examples of complex mixtures enriched in plant sec-
ondary metabolites. Along evolution, plants have in fact devel-
oped a vast array of chemical defenses to stand up against their
enemies (herbivores, fungi) to attract pollinators or to dissemi-
nate various chemical signals in their surrounding environment.
Secondary metabolites are present in all higher plants but display
a large structural diversity: different taxa usually accumulate dif-
ferent classes of secondary metabolites, reflecting the adapta-
tions to the various ecological niches plants colonized on Earth
[5]. This is in contrast to the current knowledge about the role
and distribution of primary metabolites (amino acids, organic ac-
ids, carbohydrates, etc.). Primary metabolites represent the inter-
mediates of those metabolic pathways related to the basic pro-
cesses of plant growth and development (e.g., glycolysis, TCA
cycle, ATP (adenosine triphosphate) synthesis, Calvin-Benson
cycle, etc.); as such, their presence is not confined to specific taxa,
and the key metabolic steps for their biosynthesis and degrada-
tion are mostly conserved across the green lineage. So although
most of the primary metabolic pathways have been well described
in plants, both at the genetic and biochemical level, the elucida-
tion of the pathways of secondary metabolites has lagged behind,
due to their confined taxonomic distribution and inherent difficul-
ties in purifying them from natural sources (due both to their low
amounts and chemical complexity). The study of plant secondary
metabolism is thus of interest not only for answering basic re-
search questions–such as the evolution of metabolic pathways,
the extent of natural metabolic diversity, and pathway regulation
in relation to the environmental conditions–but also from an ap-
plied perspective, given that most of the natural products of me-
dicinal importance are actually secondary metabolites.

Thus, although nearly 400,000 flowering plants have been
classified so far, only a fraction of these, around 20,000, has been
used since ancient times for medicinal purposes [5], and only a
minority of these has been studied in detail with regard to the
metabolic composition and biological effects of their crude ex-
tracts [6]. The Dictionary of Natural Products, for example, which
is a curated database of various chemical entities isolated from
plants and microbes, contains around 160,000 entries; this num-
ber is, however, considered a round-down approximation of the
extant diversity of secondary metabolites in higher plants [7].

Today, almost 30% of the new chemical entities released by the
FDA (Food and Drug Administration) are either (entirely) natural
products, botanical drugs, or semisynthetic derivatives of a natu-
856
ral product [8]. The pharmaceutical industry has been, however,
rather reluctant in investing in large-scale screening of natural
products for drug discovery [6]. One of the reasons limiting the
screening of small molecules in plants has been the inherent diffi-
culties in the purification of known compounds in adequate
yields, but also, as we have mentioned above, the incomplete
knowledge of many of the biosynthetic pathways of secondary
metabolites [9–11]. The full knowledge of the pathways of plant
secondary metabolites is of course essential to develop alternative
strategies of production in heterologous hosts (yeast, bacteria)
for pharmaceutical applications [12].

The advances in a number of systems-biology disciplines
(genomics, transcriptomics, metabolomics, and computation
biology), however, fueled by the decreasing costs for generating
large-scale molecular data, are revolutionizing our research ap-
proaches also in the field of medicinal plants.

In the present review, we will present examples where the ap-
plication of traditional biochemical and omic-based approaches
contributed to new discoveries in the pathways of some second-
ary metabolites of medicinal importance. We will not cover in de-
tail the knowledge acquired so far on the chemistry of natural
products (but we refer the reader to recent excellent reviews on
the subject: [13] for benzylisoquinoline alkaloids, [14] and [15]
for monoterpenoid indole alkaloids (MIAs), [16] for cannabinoids,
[17] for xanthine alkaloids, [18] for ginsenosides, [19] for
withanolides, [20] for artemisinin, and [21] for taxol), and we in-
stead focus on the historical developments and the advances
made recently in completing the missing parts of the puzzle in
the biosynthesis of some important natural products. In the first
part of this review, we chose to focus on the cases of benzoisoqui-
noline alkaloids (BIAs), MIAs, cannabinoids, and caffeine, as they
represent exemplary cases of how the application of several ap-
proaches, based on the integration of genomics and metabolom-
ics, has helped clarify specific biochemical steps or entire pathway
branches that had remained elusive. In the second part of this re-
view, we will summarize the knowledge acquired so far on the bio-
synthesis of specific compounds (ginsenosides, withanolides,
artemisinin, and taxol) from other important medicinal plants
where we believe integrative approaches could help further the
elucidation of their secondary metabolism with a view on the dis-
covery of novel metabolites of medicinal importance. For each
presented case study, we survey the health-related benefits and
current medicinal use of these compounds and how traditional
“reductionist” and integrative approaches are accelerating the de-
velopment of metabolic engineering strategies (in heterologous
and native hosts) for the production of secondary metabolites of
pharmaceutical interest.
Approaches for Pathway Discovery
Traditionally, the first steps in the elucidation of plant metabolic
pathways were based on the identification of a rather limited
number of primary metabolites and on the use of radioactive la-
bels to follow their fate. These were essentially the approaches
that brought to the discovery of the reactions of the path of car-
bon in photosynthesis: the strategy was based on exposing a
green algae to a stream of 14C-labeled CO2, followed by extrac-
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873



nl
oa

de
d 

fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 U

na
ut

ho
riz

ed
 d

is
tr

ib
ut

io
n 

is
 s

tr
ic

tly
 p

ro
hi

bi
te

d.
tion, separation, and identification of metabolites with paper
chromatography. The gradual decrease of the exposure time to la-
beled CO2 allowed, for example, the identification of the product
immediately downstream of the CO2 fixation reaction (phospho-
glyceric acid [22,23]). Similarly, the remaining intermediates of
the various reactions were identified, increasing the exposure
time to labeled CO2 [24]. With the advent of recombinant DNA
technology, these initial labeling approaches were combined with
the isolation of the respective genes and with the synthesis and
purification of candidate enzymes. The advent of these new tech-
nologies was also accompanied by an increasing interest toward
secondary metabolites, which were initially considered only as
“waste” products of primary metabolites, with no physiological
or ecological role [25]. The use of molecular biology techniques
(i.e., molecular cloning and heterologous expressions systems)
along with classical protein biochemistry allowed, for example,
to assess in vitro the catalytic properties, substrate specificities,
and identity of the products for a large number of enzymes in-
volved in secondary metabolism (and several examples from
these early, targeted approaches for pathway discovery of medic-
inally important phytochemicals are reported in this review). In re-
cent years, the leap of genomic technologies, with the relative
ease in collecting large-scale sequence data, has bred new life into
metabolism research [26]. The increasing number of available ge-
nome sequence is now frequently integrated with high-resolu-
tion/deep-coverage metabolomics approaches [27] not only to
uncover structural and regulatory aspects of pathways of second-
ary metabolism, but also to go deeper into the evolution of me-
tabolism across the diversification of land plants (and landmark
examples in this area are the recent reconstructions of the synthe-
sis of nicotine and caffeine [28,29]). The case studies presented
here thus represent successful examples of how targeted molecu-
lar approaches or, more recently, the combination of next-gener-
ation genomics with metabolic profiling are revolutionizing the
field of medicinal plants with new knowledge concerning the syn-
thesis of natural products.
T
hi

s 
do

cu
m

en
t w

as
 d

ow
Benzoisoquinoline Alkaloids
BIAs represent perhaps the oldest medicines humans have used to
treat pain. These alkaloids belong to a large family with over 2500
known structures; they are mostly restricted to members of the
order Ranunculales (in particular, they are present in the families
Papaveraceae and Berberidaceae), Magnoliales, and Laurales.
Among the Papaveraceae, opium poppy (Papaver somniferum L.)
has emerged as the model species to study metabolism of impor-
tant BIAs, as this plant accumulates large amounts of different
subgroups of these alkaloids [30]. The most abundant BIAs in
roots of opium poppy are those of the benzophenanthridine-type
(e.g., sanguinarine, a potent anti-inflammatory agent that has al-
so showed antitumor properties [31,32]), while the latex prefer-
entially accumulates varying amounts of morphine and codeine
(“morphinans”). Although the increasing use of opioid drugs (nat-
ural morphinans and their semisynthetic derivatives like oxyco-
done) in clinical practice is now raising concerns given their his-
tory of abuse, there is no doubt that morphine and codeine repre-
sent effective analgesics in the treatment of severe pain, at least in
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
the short-term following an acute trauma [33]. The initial isolation
of morphine from the latex of opium poppy stimulated further re-
search into the elucidation of its biosynthesis in plants. The first
studies were based on radiolabel incorporation of a few candidate
substrates and established tyrosine and its derivatives as the pre-
cursors of morphine [34,35]. We now know, after decades of re-
search that have seen the application of more detailed tracer
studies and biochemical characterization of the related enzymes,
that the biosynthesis of BIAs involves a highly branched network
of chemical transformations starting from two tyrosine deriva-
tives, dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA)
[13]. These two metabolites condense to give rise to (S)-norco-
claurine, which is in turn modified by a number of O-, N-methyl-
transferases and oxidoreductases to produce (S)-reticuline, the
precursor of almost all subgroups of BIAs. From (S)-reticuline, the
pathway diverges into different branches, which may be active
only in some species or tissues, resulting in the wide structural
diversity of BIAs subgroups that has been observed in plants
(▶ Fig. 1).

The early efforts in the elucidation of BIA biosynthesis were
based on the purification of the putative enzymes and on the
screening of cDNA libraries for the isolation of the corresponding
genes; these initial studies allowed, for example, the characteriza-
tion of norcoclaurine synthase, the enzyme responsible for the
condensation of dopamine and 4-HPAA, producing (S)-norco-
claurine [36,37]. Similar approaches have been followed in the
elucidation of the remaining early steps of the BIA pathway: the
synthesis of (S)-coclaurine, for example, by the action of a 6-O-
methyltransferase (norcoclaurine 6-O-methyltransferase, 6OMT)
[38,39] or, analogously, the synthesis of (S)-N-methylcoclaurine
by a N-methyltransferase (coclaurine N-methyltransferase, CNMT,
[40]). The late steps of morphinan biosynthesis remained instead
uncharacterized until the development of global gene expression
resources for opium poppy. After screening a number of varieties
and mutants differing in their accumulation of morphine, two
candidate genes were eventually proposed on the basis of the cor-
relation of their expression with the accumulation profiles of mor-
phinans. The discovery of these two genes, thebaine-6-O-deme-
thylase (DIOX1) and codeine-O-demethylase (DIOX3), was thus
made possible by the development of cDNA microarrays from an
opium poppy EST (expressed sequence tag) database [41].

The advent of these “early” global gene expression resources in
P. somniferum (ESTs collections, microarray) heralded a new era in
the study of BIA metabolism. Additional gene expression re-
sources–based on next-generation sequencing–were developed
and integrated with metabolomics and proteomics studies in or-
der to identify novel gene candidates [42]. As an example of this
approach, known cytochrome genes of the CYP80B3 and
CYP82N3 subfamilies, responsible for hydroxylating (S)-N-methyl-
coclaurine and protopine, respectively, were used as queries in a
co-expression analysis to discover additional BIA biosynthetic
genes in several accessions of opium poppy [43].

More recently, integrative approaches based on the combina-
tion of gene expression analyses and metabolic profiling were also
fundamental in unveiling the nature of a biochemical step in BIA
biosynthesis that had remained elusive for a long time. The first
step of the morphinan branch is the conversion of (S)-reticuline
857



▶ Fig. 1 BIAs biosynthetic pathways of P. somniferum (opium poppy) discussed in the text. All BIAs derive from (S)-norcoclaurine, the product of the
condensation of two tyrosine derivatives, dopamine and 4-HPAA. After a series of O-, N-methyltransferase and hydroxylation reactions, (S)-norco-
claurine is converted into (S)-reticuline, the central precursor of all BIAs biosynthetic branches. NCS: norcoclaurine synthase; NMCH: (S)-N-methyl-
coclaurine 3′-hydroxylase; 4′-OMT 3′-hydroxy-N-methylcoclaurine 4′-hydroxylase; STORR: (S)-to-(R) reticuline (aka REPI, reticuline epimerase);
P6H: protopine 6-hydroxylase; DBOX: dihydrobenzophenanthridine oxidase; SalSyn: salutaridine synthase; SalR: salutaridine reductase; SalAT:
salutaridinol 7-O-acetyltransferase; T6ODM: thebaine 6-O-demethylase; CODM: codeine O-demethylase; COR: codeinone reductase; SOMT1:
scoulerine 9-O-methyltransferase; CAS: canadine synthase; TNMT: tetrahydroprotoberberine N-methyltransferase; NOS: noscapine synthase.
Dashed arrows indicate multiple steps.
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into its R stereoisomer; the reaction is a two-step process involv-
ing the oxidation of (S)-reticuline to 1,2-dehydroreticuline and the
subsequent reduction to (R)-reticuline. Although the reaction was
supposed to be catalyzed by two different genes, in agreement
with the reaction being a two-step process, screening of tran-
scriptome libraries from opium poppy identified instead a single
fused gene composed of two domains. This gene, named STORR
(from S- to R-reticulin), encodes a unique bifunctional protein
containing a P450 monoxygenase at the N-terminus and an oxi-
doreductase at the C-terminus [44,45]. The genetic analysis of
opium mutants with impaired synthesis of morphine and high ac-
cumulation of reticuline confirmed STORR as the causal locus for
the epimerization of S- to R-reticuline. Bifunctional genes like
STORR, including monoxygenases fused with various additional
domains (hydrolase, dioxygenase), have been found also in sec-
ondary metabolic pathways of other organisms (e.g., fungi,
858
[46]); it is thus possible that the occurrence of these genes could
represent a sort of metabolic channeling of higher efficiency, in
which highly unstable intermediates–like those formed during an
epimerization reaction–are converted into final products by the
action of a single protein rather than by a multienzymatic assem-
bly [44].

Another example of the application of integrative approaches
to the metabolism of BIAs lies in the elucidation of the biosynthe-
sis of noscapine. This alkaloid belongs to the phtalideisoquinoline
subgroup of MIAs; it was already widely used for its antitussive
properties but has recently been demonstrated to possess antitu-
mor activity given its ability to bind tubulin and arrest cell division
in a number of cancer cell lines [47]. It was later showed that
noscapine specifically targets the NF-κB signaling pathway in tu-
mor cells, repressing proteins involved in cell invasion and tumor
proliferation [48]. Early radiolabeling experiments in the 1960s
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
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traced back the origin of noscapine to (S)-scoulerine [49], which is
produced starting from (S)-reticuline by the action of a FAD-linked
(FAD: flavin adenine dinucleotide) oxidoreductase (BBE, berber-
ine-bridge enzyme). From (S)-scoulerine, the synthesis of nosca-
pine requires at least six additional biosynthetic steps, including
O- and N-methylations and several oxidations, but only recently
could the complete pathway to noscapine be elucidated in detail.
The clarification of the pathway was made possible thanks to the
availability of opium poppy varieties accumulating different
amounts of noscapine and morphinans. Stems and capsules of
these varieties were subjected to RNA sequencing and metabolic
profiling to identify genes specifically expressed by the high-no-
scapine variety (HN1). A number of O- and N-methyltransferases,
along with several cytochrome P450s, were found to be highly ex-
pressed only in the high-noscapine variety. Genomic analysis
showed that these genes were actually exclusive of HN1. A mQTL
(metabolic quantitative trait loci) analysis for noscapine content in
an F2 population identified a single locus that was found to be
strongly linked to the high-noscapine phenotype in the segregat-
ing generation. The locus contained a cluster of 10 genes span-
ning 220 kbp; the clustered genes corresponded to those previ-
ously identified as being exclusively present in HN1 [50]. The re-
construction of the pathway was also supported by virus-induced
silencing of the cluster genes, thus allowing to confirm the role of
each gene and measuring the accumulation of the various inter-
mediates [50]. The occurrence of the high-noscapine cluster was
not a feature unique to BIA metabolism: cluster organization is in
fact a recurrent feature in the genomic organization of pathway
genes of secondary metabolism [51].

The knowledge acquired so far on the biosynthesis of medici-
nally important BIAs has of course allowed the transfer of partial
or entire pathways into non-plant hosts. Strategies for chemical
synthesis of morphinans (e.g., morphine, codeine, aka “opiates”)
have in fact been demonstrated not to be economically feasible;
therefore, the licit cultivation of opium poppy is the only source
of opiates, from which several semisynthetic derivatives
(“opioids”) can be also obtained through semisynthesis (e.g., hy-
drocodone, [52]). Synthesis of thebaine and hydrocodone, for ex-
ample, has been obtained in yeast starting from common precur-
sors of primary metabolism. This has required the (over)expres-
sion of over 20 genes from yeast itself, plant (P. somniferum and
Papaver bracteatum Lindl.), bacteria, and mammals. Many of the
genes transformed into yeast were specifically engineered to in-
crease their activity and stability (e.g., through site-specific muta-
genesis to make the enzymes less sensitive to feedback inhibition
or to modify their glycosylation patterns); although the fermenta-
tion titers for the production of thebaine and hydrocodone re-
mained nevertheless low, especially when compared with the
yields obtained with direct purification from opium or semisyn-
thesis, the results obtained so far represent a starting point for
further optimization of an alternative strategy for opioids pro-
duction [53,54]. Similar strategies have also been followed in
Escherichia coli [55] and in yeast for the synthesis of dihydrosan-
guinarine, a BIA showing antitumor activity [56].
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
Monoterpenoid Indole Alkaloids
MIAs represent another class of important alkaloids whose biosyn-
thesis has been studied in detail due to their diverse pharmacolog-
ical effects. Vinblastine and vincristine, for example, two MIAs of
the bisondole-type isolated from the plant Catharanthus roseus
(L.) G. Don (Madagascar periwinkle, family Apocynaceae), show
toxicity to white blood cells of mammals and are used today as ef-
fective medications to treat tumors like lymphoma and myeloma
[57]. Other important MIAs include camptothecin, an inhibitor of
DNA topoisomerase I isolated from the tree Camptotheca acumi-
nata Decne (Nyssaceae) (irinotecan, a semisynthetic derivative of
camptothecin, is one of the most diffused chemotherapeutic in
the treatment of colon cancer) and quinine, an antimalarial iso-
lated from the bark of the Cinchona trees (Cinchona spp.). Quinine
is still in use today, although it has been replaced by artemisinin as
the recommended first-line treatment for malaria.

MIAs constitute a large family, with over 3000 structures iden-
tified to date. They are mostly confined to plants of the order
Gentianales, in the family of Apocynaceae, Loganiaceae, and Ru-
biaceae. The species C. roseus, which synthesizes over 150 differ-
ent MIAs, has emerged in this case as the model plant for studying
the biosynthesis and regulation of this important class of alkaloids
[30].

The biosynthetic pathway of MIAs is complex. As an example,
the complete biosynthesis of vinblastine in C. roseus proceeds
through at least 30 enzymatic steps, which take place in several
different tissues (phloem-associated parenchyma, epidermis,
mesophyll, laticifer) and subcellular compartments (plastid,
nucleus, ER [endoplasmic reticulum], and vacuole) [58–61]. The
chemical complexity of most of the active MIAs hampered devel-
opments in chemical synthesis; this factor, combined with the
general low number of MIAs recovered from plant sources, drove
efforts toward the elucidation of biochemical pathways as a nec-
essary step to develop metabolic engineering strategies. We will
thus first summarize here the main branches of the MIA biosyn-
thetic pathway to later focus on the recent discoveries made in
the elucidation of the steps that were previously poorly character-
ized.

As the name suggests, all MIAs contain a terpenoid and an in-
dole moiety. The terpenoid moiety derives from secologanin, a
cyclic monoterpene formed from geraniol. The indole moiety of
MIAs is instead coming from tryptamine, as a result of the decar-
boxylation of tryptophan. Tryptamine and secologanin then con-
dense to give rise to strictosidine, the precursor of all MIAs. The
whole pathway thus consists of four main parts:
▪ The first part is the synthesis of geraniol, through the plastid

MEP (methylerythritol 4-phosphate) pathway. Although two
different routes exist in plants for the synthesis of terpenoid
precursors (the cytosolic mevalonate and the plastidic MEP
pathway [62]), early labeling studies supported the origin of
the terpene moiety of MIAs from the MEP pathway [63].

▪ The second part is the conversion of geraniol into secologanin
in a series of eight steps that have been elucidated recently (iri-
doid pathway [64–68]) (▶ Fig. 2).

▪ The “mid-pathway” then involves the formation of strictosi-
dine starting from secologanin and tryptamine [69], its degly-
859



▶ Fig. 2 MIA biosynthesis (iridoid pathway) in C. roseus. The entire pathway is composed by eight steps converting geraniol into secologanin.
Geraniol is mainly derived from the plastidial MEP pathway. The early steps in the pathway, up to the synthesis of loganic acid, take place in the
phloem-associated parenchyma (vascular cells), while the last two genes in the pathway have been localized to the epidermal cells. The gene
responsible for transporting loganic acid across the two cell types has not been identified yet. 10HGO: 10-hydroxygeraniol oxidoreductase;
IS: iridoid synthase; IO iridoid oxidase; 7-DLGT: 7-deoxyloganetic acid glucosyltransferase; 7-DLH: 7-deoxyloganic acid hydroxylase; LAMT: loganic
acid methyltransferase; SLS: secologanin synthase.
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cosylation [70], and a series of downstream transformations
whose steps have been clarified, in part, only recently [71,72]
(▶ Fig. 3).

▪ Finally, the “late-pathway” converts tabersonine, a down-
stream product of strictosidine, into vindoline, the immediate
precursor of vinblastine [73–75] (▶ Fig. 3).

The first approaches in the elucidation of the steps of MIA biosyn-
thesis were mostly based on conventional strategies starting from
the purification of the single enzymes, analysis of their AA (ami-
noacid) sequences, and cloning of full-length clones from cDNA
libraries using degenerate primers. This was the approach fol-
lowed, for example, for the identification of geraniol-10-hydroxy-
lase (G10H), the enzyme responsible for the hydroxylation of ger-
aniol, the first step of the iridoid pathway [76,77] and for the pu-
rification and cloning of strictosidine beta-glucosidase [70,78].
More recently, several transcriptome resources and databases
860
have been developed in C. roseus, and these have been used for
initial selection of candidate genes of MIA biosynthesis [79–85].

As an example of this approach, transcriptome datasets from
several tissues of a C. roseus plant [68,86] have been screened to
identify the gene responsible for an elusive step in iridoid biosyn-
thesis, the cyclization reaction of 10-oxogeranial into iridodial (iri-
doid synthase). Since the reaction was known to occur in the pres-
ence of NADH (nicotinamide adenine dinucleotide [reduced])/
NADPH (nicotinamide adenine dinucleotide phosphate [re-
duced]), the genes using these two cofactors were first selected
from the entire transcriptome dataset; then only the transcripts
showing a similar expression profile to that of G10H (an upstream
gene in the same pathway) were retained and considered as can-
didates for iridoid synthase. The transcript showing the highest
correlation to G10H was selected for functional validation. The ex-
pression of the enzyme in E. coli showed that it was able to convert
10-oxogeranial into cis-trans nepetalactol (which is in equilibrium
with cis-trans iridodial), and VIGS (virus-induced gene silencing) of
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873



▶ Fig. 3 “Mid” and “late” pathway steps in the biosynthesis of MIAs in C. roseus. The first step is the condensation between secologanin (end
product of the Iridoid biosynthesis) and tryptamine to form strictosidine in the vacuole of epidermal cells. Strictosidine is then exported from the
vacuole into the cytosol through a transporter of the nitrate/peptide family (CrNPF2.9). The deglycosylated form of strictosidine (strictosidine
aglycone) is the central biosynthetic intermediate of many MIAs types. Vindoline, for example, derives from tabersonine and accumulates in
laticifers; prekuammicine is instead the precursor of catharanthine, which is then exported to the leaf surface via another transporter, CrTPT2.
Leaf damage or herbivory can cause cell disruption, allowing catharantine and vindoline to react together and form the dimeric MIA vinblastine.
TDC: tryptophan decarboxylase; STR: strictosidine synthase; SGD: strictosidine beta-glucosidase; D4H: desacetoxyvindoline 4-hydroxylase; DAT:
deacetylvindoline 4-O-acetyltransferase. Dashed arrows indicate multiple steps.
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the candidate gene in C. roseus confirmed downregulation of the
transcript and the lower accumulation of several MIAs down-
stream of iridoid synthase (e.g., vindoline and catharantine) [68].
Mining the expression databases from C. roseus and analysis of
coregulation with additional known genes, proved to be useful al-
so for the discovery of other genes involved in the remaining steps
of iridoid biosynthesis [64].

One of the most interesting features of MIA biosynthesis is the
spatial distribution of its enzymes. The various parts of the path-
way operate in fact in different cell types: (i) the MEP reactions
and the early reactions of iridoid biosynthesis occur in the
phloem-associated parenchyma; (ii) the remaining steps of the iri-
doid pathway and the “mid” reactions take place in the epidermis,
while (iii) the reactions of the late pathway occur in laticifers [75].
Adding to this complexity, the reactions taking place in the leaf
epidermis are also compartmentalized at the subcellular level:
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
the condensation of tryptamine and secologanin to form strictosi-
dine occur in fact in the vacuole, while the downstream transfor-
mations of strictosidine occur in the nucleus and in the cytosol
[87]. In particular, the physical separation between the synthesis
of strictosidine (vacuole) and its immediate successive step, de-
glycosylation (nucleus), implies the existence of an export system
from the vacuole. Transporter genes have long remained elusive
in MIA biosynthesis, with only two systems characterized to date:
the export of catharanthine (the immediate precursor of vinblas-
tine) to the leaf surface [88] and the sequestration of vindoline in-
side the vacuole of mesophyll cells [89]. Also in this case, however,
the recent developments of transcriptome resources, combined
with functional studies in planta, allowed the elucidation of a
transporter gene responsible for the export of strictosidine from
the vacuole to the cytosol [90]. In order to identify transporter
genes, self-organizing maps (SOMs) have been used to cluster all
861
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transcript contigs according to the similarity of their expression
profiles across a wide range of tissues and developmental stages.
The high-quality nodes of the SOMs that contained known MIA
biosynthetic genes were then retained and inspected for the pres-
ence of putative transporter genes. This led to the identification of
a candidate transporter of the NPF (nitrate/peptide family) family
(CrNPF2.9). Further analysis confirmed the role of this gene in the
export of strictosidine from the vacuole. For example, transient si-
lencing of CrNPF2.9 in leaf of C. roseus led to a necrotic phenotype,
probably as a result of the increase in the vacuolar accumulation
of strictosidine [90].

As in the case of BIAs, several strategies have been attempted
also for production of MIAs in microbial hosts. The commercial
production of vincristine and vinblastine, for example, which are
powerful therapeutic agents for the treatment of several forms
of blood cancer, relies entirely on extraction from plant sources.
Most of the active MIAs, however, including vincristine and vin-
blastine, are produced in extremely low amounts, so their extrac-
tion from plant tissues is uneconomical and laborious for com-
mercial production. The first attempt to produce MIAs in micro-
bial hosts focused on the production of strictosidine in yeast.
Strictosidine represents in fact the central precursor for a number
of MIAs of medical importance (vincristine, vinblastine, quinine,
strychnine, ajmalicine). Reconstitution of the pathway in Saccha-
romyces cerevisiae required the integration of a total of 21 genes;
of these, 15 represented the entire known plant MIA pathway,
while the remaining six were either duplication of yeast endoge-
nous genes or animal-derived sequences. The transformed yeast
strain also contained targeted deletions of endogenous genes to
decrease the flux into competing routes. As reported already for
opiate production in yeast, also in this case the final yields of stric-
tosidine remained nevertheless low (around 0.5mg/L) for com-
mercial production [91]; the production of this yeast strain repre-
sents in any case the basis for further optimization of the flux to-
ward strictosidine or as a starting point for the synthesis of non-
natural products [92].
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Cannabinoids
Cannabinoids constitute a group of terpenic alkylresorcinols
found in Cannabis sativa L., a dioecious plant of the Cannabaceae
family. They accumulate in the glandular cavity of specific types
of trichomes (capitate sessile or stalked trichomes), which are par-
ticularly abundant in female flowers and, to a lesser extent, in
other parts of the plant (e.g., leaves, shoots). More than 120 dif-
ferent cannabinoids have been isolated to date [16], although the
study of their medical and pharmacological effects focused on the
most abundant ones, tetrahydrocannabinol (THC) and cannabidiol
(CBD) [93,94]. Scientific studies on the medical effects of canna-
binoids were stimulated by anecdotes reported by people who
used to smoke cannabis to relieve pain or to treat a number of con-
ditions (loss of appetite, insomnia). Cannabis in fact represents
one of the first plants used for medicinal purposes since ancient
times. The first reports of its medical use date back to 2700 BC,
when teas and other infuses were already prepared in China to re-
lieve symptoms of rheumatisms and arthritis. Also, archeological
evidences from a burial cave near Jerusalem, dating back to
862
390 BC, document the use of smoked cannabis to relieve pain. In
addition to its use as a medicine, cannabis has always been used as
a source of textile fibers (“bast” fibers) and as a recreational psy-
choactive drug to achieve a status of mental high. Zoroastrian
priests and shamans (~ 500 BC), for example, used cannabis to
reach ecstasy during their religious ceremonies [95]. Today, fiber-
type cannabis plants continue to be used as a fiber in the textile
and bioplastic industries [96], while marijuana-type cannabis rep-
resents one of the most highly consumed recreational drugs in the
world. Despite the strict regulations around cannabis research,
several cannabinoid preparations have been tested in controlled
trials for relieving symptoms associated to cancer or HIV [97].

The isolation and structural elucidation of cannabinoids began
in the 1940s with the isolation of cannabinol and cannabidiol [98,
99], but it was not until 1964 that the structure of Δ9-THC–the
main psychoactive component–was reported [100]. In a series of
papers from the 1990s, it was found that THC exerts its effects
through binding to two different receptors in the human body:
CB1, which is present in the brain [101,102], and CB2, which is
instead mainly located in the immune system [103]. The charac-
terization of these receptors led to the discovery of additional
substances produced by the human body that also target the can-
nabinoid receptors [104]. These endogenous ligands were named
endocannabinoids to distinguish them from the phytocannabi-
noids produced in the trichomes of the cannabis plant. We now
know that the interaction between endocannabinoids and CB1/
CB2 constitutes the “endocannabinoid system”, a central regula-
tor of homeostasis in the human body. Typical responses mediat-
ed by this system include pain perception, memory, appetite, im-
munity, and, of course, the neurological responses induced by the
psychoactive Δ9-THC [105].

Although more than 120 phytocannabinoids have been re-
ported in the literature, their biosynthesis has been fully described
only for the most abundant components, THCA (tetrahydrocan-
nabinolic acid) and CBDA (cannabidiolic acid) (▶ Fig. 4). THCA is
the most abundant cannabinoid in marijuana-type plants, while
CBDA, which does not possess psychoactive properties, is instead
the most abundant in hemp (fiber-type plants). We will present
here some examples to show the advances made in the elucida-
tion of the steps in the core cannabinoid pathway. While the first
steps to be defined, historically, were based on classical enzyme
purification approaches and homology-based cloning of the cor-
responding genes, more recently the development of genomics
and transcriptomics resources in cannabis have helped to clarify
additional biosynthetic steps [106–108]. Also, at least initially,
the elucidation of the cannabinoid pathway was made difficult by
the low incorporation of the label [109] and by the fact that can-
nabinoids occur in vivo as carboxylic acids but are then decarboxy-
lated to neutral (active) forms during heating or smoking.

All phytocannabinoids are formed by an alkylresorcinol (phe-
nolic) moiety coupled to a monoterpene (▶ Fig. 4). Labeling stud-
ies using 13C-glucose showed that the monoterpene moiety de-
rived from the plastidial MEP pathway, while the alkylresorcinol
was produced through the polyketide pathway [110]. The first
step in the synthesis of THCA and CBDA is the condensation of oli-
vetolic acid (OA, an alkyresorcinol) with geranylpyrophosphate
(GPP), leading to cannabigerolic acid (CBGA), the immediate pre-
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873



▶ Fig. 4 Biosynthetic pathways of the major phytocannabinoids, Δ9-THC and CBD. The alkyresorcinol (phenolic lipid) moiety of cannabinoids
derive from the polyketide pathway, in which hexanoyl-CoA is first condensed with three molecules of malonyl-CoA by the action of TKS and then
cyclizes to form OA in a reaction catalyzed by OA cyclase (OAC). The addition of GPP, from the plastidial MEP pathway, then generates CBGA, the
immediate precursor of Δ9-THCA and CBDA. Δ9-THCA (and its decarboxylated form, delta9-THC) represent the psychoactive compounds of
marijuana-type plants. The most abundant cannabinoid in hemp (fiber-type cannabis) is instead the non-psychoactive CBDA.
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cursor of THCA and CBDA. The reaction is catalyzed by an aro-
matic prenyltransferase (geranyl pyrophosphate: olivetolate gera-
nyltransferase, GOT), which was isolated in 1998 [111]. The gene
(CsPT) was later cloned and shown to be expressed in leaves, flow-
ers, and trichomes [112,113].

CBGA is then the substrate of two different FAD oxidases: the
tetrahydrocannabinolic acid synthases (THCA synthase) and the
cannabidiolic acid synthase (CBDA synthase), which produce, re-
spectively, THCA and CBDA. The two genes, which share 84% sim-
ilarity, are encoded by different loci [114]. Both THCA and CBDA
synthase were purified through enzymatic assays from crude ex-
tracts and their respective genes cloned using degenerate PCR
primers (THAS: [115]; CBDA: [116,117]).

The steps leading to the synthesis of the alkyresorcinol precur-
sor of cannabinoids, OA, have, however, remained elusive, and it
was not until recently that these biosynthetic steps have been clari-
fied. OA was long supposed to be synthesized starting from hexa-
noyl-CoA through successive condensations with three molecules
ofmalonyl-CoA, in a series of steps catalyzed by a type III polyketide
synthase (PKS, [118,119]). A type III PKS cloned from cannabis
leaves (named tetraketide synthase, TKS), however, did not pro-
duce OA and was instead shown to accumulate, among other by-
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
products, α-pyrones [120]. These metabolites were typical down-
stream products of polyketide pathways in bacteria lacking
polyketide cyclase activity [121]. On the basis of this, candidates
with structural similarity to polyketide cyclases were selected from
an EST library of cannabis trichomes, leading to the identification of
a member of the dimeric α+β barrel protein superfamily (DABB
superfamily). This gene, which was distantly related to type II
polyketide cyclases of bacteria (Streptomyces), was able to convert,
in the presence of TKS, hexanoyl-CoA and malonyl-CoA into OA,
acting effectively as a noncanonical polyketide cyclase [107]. A
similar approach, based on mining the same EST database from
cannabis trichomes, was also used to identify the acyl-activating
enzyme responsible for the synthesis of hexanoyl-CoA, the first
step of the polyketide pathway in cannabinoid biosynthesis [108].

The elucidation of the steps in the biosynthesis of the main
phytocannabinoids opened the possibility to transfer the pathway
to heterologous hosts for commercial production of THCA/THC
and CBDA/CBD. These two cannabinoids have in fact several phar-
macological effects. THC, the neutral psychoactive form of THCA,
targets mainly the CB1 receptor in the central nervous system and
has analgesic and antispastic activities. Its consumption is, how-
ever, associated to well-known side effects (memory loss, de-
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creased coordination, and, in some individuals, anxiety, [122]).
CBD, on the other hand, may reduce the side effects of THC and
has shown pharmacological potential to reduce inflammation and
symptoms of epilepsy [123]. Sativex, which is the only cannabi-
noid-based drug approved so far in 27 countries, is a mouth spray
of THC and CBD. This drug is used today to treat the spasticity as-
sociated to multiple sclerosis [94]. Given the potential shown by
THC and CBD, various strategies have been attempted in meta-
bolic engineering of cannabinoids. Cell cultures of cannabis, even
in the presence of elicitors, have resulted in limited yields, prob-
ably due to the lack of compartmentalization required by the high
toxicity of cannabinoids [124,125]. A more promising approach
might be represented by the production of THCA synthase in
Pichia pastoris and its use in a cell-free two-liquid phase reactor
to drive the synthesis of THCA. Also, this system, however,
achieved relatively low yields (0.121 g · L−1 · h−1 of THCA), probably
as a consequence of the sensitivity of THCA synthase to be inhib-
ited by its substrate [126,127].

Today, the regulations around the use of cannabis, and the re-
search around it, are becoming less strict. Several European coun-
tries and the United States have exemptions for the medical use of
marijuana; other U.S. states have legalized cannabis consump-
tion, in moderate amounts, for personal use. Canada and Israel
have funding bodies and programs specific for cannabis research.
As the regulations in cannabis research will ease, we anticipate the
development of additional genomic and metabolomics resources
in cannabis. The integration of these resources will aid the eluci-
dation of the full biosynthetic pathways of cannabinoids, opening
the way to the discovery of novel compounds of potential medici-
nal importance.
T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

a

Caffeine
Caffeine (1,3,7-trimethylxanthine) is a xanthine (purine) alkaloid
found in guarana, yerba maté, cacao, and several species used to
make tea. Traditionally, it is called guaranine when it comes from
the guarana plant (Paullinia cupana Kunth, family Sapindaceae),
theine when it comes from the tea plant (Camellia sinensis (L.)
Kuntze, family Theaceae), and mateine in mate infusions; how-
ever, they all are the same compound. In addition, cacao, which
accumulates only trace amounts of caffeine, contains the similar
compound theobromine, which has similar, albeit less potent,
bioactivities to caffeine. Of the species listed above, genome se-
quences for coffee [128], tea [129], and cacao [130] have been
published indicating that at least three metabolic pathways for
caffeine biosynthesis evolved independently co-opting genes
from different gene families. The appearance of at least three
pathways for caffeine biosynthesis in higher plants is thus an ex-
ample of recurrent convergent evolution: the presence of caffeine
per se in species from multiple plant orders (Malvales, Sapindales,
Ericales, and Gentianales) did not always imply the recruitment of
homologous genes [29] (▶ Fig. 5). Intriguingly, this study, which
relied on sequence information from five flowering species, re-
vealed that caffeine biosynthesis was characterized by an even
greater degree of convergent evolution than was previously
thought, with citrus, chocolate, and guarana plants containing
two previously unknown pathways of caffeine synthesis using ei-
864
ther caffeine synthase or xanthine methyltransferase-like en-
zymes. Moreover, ancestral sequence reconstruction revealed
that these pathways would have arisen rapidly since the ancestral
enzymes were co-opted from their previous biochemical roles to
those of caffeine biosynthesis. As such, this seminal paper pro-
vides a fantastic blueprint for studies into the evolution of natural
product biosynthesis.

Caffeineʼs exact function in planta is unclear, and two main
roles, which are by no means mutually exclusive, have been pro-
posed. In the first of these, sometimes called the chemical de-
fense theory, caffeine is believed to protect young leaves and fruit
from predators [131,132]. In keeping with this, Uefuji et al. [133]
demonstrated that leaves of transgenic tobacco (Nicotiana taba-
cum L. [Solanaceae]) plants, engineered to produce caffeine, were
less susceptible to insect feeding than leaves that did not contain
caffeine. In the second, sometimes known as the allelopathic
theory, caffeine is believed to be released by the seed coat to pre-
vent germination of other seeds [134]. Evaluation of the cacao ge-
nome, the first of the three caffeine-containing species to be se-
quenced, suggested that cacao harbors a rich repertoire of homo-
logs of secondary metabolism-associated genes, including path-
ways for oils, storage lipids, flavonoids, and terpenes as well as
the alkaloid class to which caffeine belongs. The analysis of multi-
ple metabolomics studies of this species suggests that functional
prediction of the gene repertoire mentioned above was indeed
largely correct [135]. The evolution of caffeine and indeed its
metabolic precursor theobromine was, however, looked at in
more detail following publication of the coffee and tea genomes
[128,129]. Intriguingly, coffee was characterized to contain sev-
eral species-specific gene family expansions including that of the
xanthine N-methyltransferases (XMTs) involved in caffeine pro-
duction and revealed that these genes expanded through sequen-
tial tandem duplications independently of genes from cacao and
tea. As for cacao, a large number of metabolomics studies have
been performed on coffee and tea identifying high contents of
caffeine, quinate, and chlorogenic acid in the former [136–138]
and catechins, terpenes, and caffeine in the latter [139–141].
Since there is also an increasing amount of transcriptomics data
available for these species [142–148], it would appear likely that
evaluating the dynamic behavior of transcripts related to caffeine
biosynthesis in comparison to other unknown genes (and to the
levels of the metabolites themselves) will greatly enhance our
understanding as to how these pathways are controlled. One
study of particular interest is the long read sequencing of the cof-
fee bean transcriptome since this provided more and longer tran-
script variants specifically allowing the identification of a further
10 transcripts likely to encode key enzyme isoforms of caffeine
biosynthesis [142]. This information thus greatly extends the
number of candidate genes that are potentially important deter-
minants of the final caffeine level within plant cells, and their
study will thus prove instrumental in allowing rational design of
metabolic engineering strategies aimed at modifying caffeine
content. In addition, two other studies, this time in tea, have been
highly informative in analyzing the regulation of caffeine biosyn-
thesis. The first of these built gene regulatory networks for sec-
ondary metabolism of a wide range of tea tissues implicating a
large number of transcription factors in the regulation of caffeine
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873



▶ Fig. 5 Biosynthetic pathways of caffeine biosynthesis. The synthesis of caffeine evolved independently in several orders of eudicots. Two different
gene families have been recruited to synthesize caffeine: (i) caffeine synthases (CS), which sequentially methylate xanthine (in cacao and guarana)
or xanthosine (in C. sinensis) to eventually produce caffeine; (ii) XMTs, which are instead active in the flowers of C. sinensis and in coffee (C. arabica).
Different substrate specifies of CS and XMT enzymes gave rise to at least three main pathways in caffeine-accumulating plants. The first pathway
represents the CS lineage and is the route present in cacao and guarana (red); the second pathway is the synthesis of caffeine operated by the XMT
genes (C. sinensis and C. arabica, blue); C. sinensis has instead recruited the genes in the CS lineage but synthesizes caffeine through the same se-
quence of intermediates detected in C. arabica (green). Guarana and Citrus sinensis, although both members of the Sapindales, have converged on
caffeine synthesis co-opting different genes. CS: caffeine synthase.
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biosynthesis [149]. The second article used a comparative tran-
scriptomic and metabolomics analysis of tea and oil tea that does
not produce caffeine, indicating higher expression of the key phe-
nylpropanoid enzymes flavanone-3-hydroxylase, dihydroflavonol
reductase, and anthocyanidin reductase in tea but lower levels of
phenylalanine ammonia-lyase and chalcone isomerase; however,
the exact link between this and the levels of caffeine is not appar-
ent from this study [150]. Thus, these studies offer hints to the
regulation; however, due to the genetic recalcitrance of the spe-
cies, it will likely be several years before these can be confirmed
at the molecular level.

Caffeine is a compound whose medicinal properties are at least
in part offset by its addictive properties [151,152], and as such, it
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
remains very much debated as to how healthy it actually is. That
said, a lot of the idea that coffee is dangerous springs from work in
the 1970s and 1980s in which its consumption was linked to high-
er incidence of cancer and heart disease [153,154]; however,
much of this early research should be disregarded since it did not
take into account other health-detrimental habits in the cohorts
such as cigarette smoking. More recent analyses evaluating health
and diet data of a cohort of 400,000 adults over a period of
13 years revealed no evidence that coffee consumption increased
death from either these diseases or indeed any others with any-
thing but a minor drop in mortality rate among regular coffee
drinkers [155]. Coffee has additionally been linked to lower rates
of type 2 diabetes [155], reduced risk for some cancers [156], and
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protection against Parkinsonʼs disease [157], as well as inhibiting
propagation of hepatitis C virus [158]; however, as we detail be-
low, at least some of these proposed functions remain very much
under debate. By contrast, caffeine has been suggested to inhibit
lipid anabolism and thereby have a contributory role in metabolic
syndrome [159]. In addition, coffee consumption has been linked
to diversity of gut bacteria and is often added to painkillers in the
belief that it aids in analgesic efficiency [160]. Largely on the basis
of its properties as a stimulant, overconsumption of caffeine has a
number of (short-term) health-negative effects including para-
noia, restlessness, anxiety, high blood pressure, very fast and ab-
normal heart rate, vomiting, and confusion [161].

However, given the richness in terms of metabolic diversity of
all species accumulating caffeine and the specific medicinal impli-
cations of any one of their constituents, it is clearly very hard to
disentangle, as is the case of all food-based bioactives, the
health-positive effects of one from another.

That said, interestingly, several studies have shown that decaf-
feinated coffee has the same health properties, suggesting–
although by no means proving due to the small amounts of resid-
ual caffeine in such beverages–that caffeine itself is not the bio-
active ingredient in such instances. This fact aside, the current
consensus appears to be that there are relatively few health-neg-
ative effects of caffeine (with the exception of those following ex-
treme consumption). Although the purported health-positive ef-
fects remain somewhat contentious, it is likely that in the coming
years they will be exposed to severe scrutiny, and only then we will
be in a position to categorically state the case that caffeine is ef-
fective against any one ailment or the other.
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Ginsenosides constitute a group of triterpenoid saponins that are
exclusively produced in plants of the Panax genus (family Aralia-
ceae). The name “Panax” comes from Greek, meaning “all-heal-
ing,” and refers to the medicinal properties of these plants. Of
the nine existing Panax species, three in particular have been
studied in relation to their pharmacological activities: Panax gin-
seng C.A. Mey. (Chinese ginseng), Panax quinquefolium L. (Ameri-
can ginseng), and Panax notoginseng (Burkill) F.H.Chen [162].
These species have been–and still are–widely used in Chinese tra-
ditional medicine to treat a number of ailments, including fatigue,
anemia, rheumatisms, and cardiac disorders. The use of ginseng
as a herbal remedy dates back to about 100 AD, when it was be-
lieved that the dry root powder of this plant possessed miraculous
healing effects [163].

Ginsenosides accumulate during the normal development of
the ginseng plant. The total amount of ginsenosides has been
shown to be higher in leaves of one-year-old seedlings and mature
roots [18]. The accumulation and composition of ginsenosides is
regulated during growth, but the exact mechanism of how this
occurs still remains not clear [164]. At least 150 naturally occur-
ring ginsenosides have been described so far [165], and a number
of multiple benefits on human health has been reported, such as
strong anti-oxidative, antitumoral, and anti-inflammatory activ-
ities.
866
Ginsenosides have been classified according to their chemical
skeleton in two different types: dammarane- and oleanane-type
ginsenosides. Based on the glycosides attached, the dammarane
ginsenosides are further divided into three different subgroups:
PPD-type (protopanaxadiol), PPT-type (protopanaxatriol), and
ocotillol-type (▶ Fig. 6).

Recent studies showed that the molecular structure of the gin-
senosides is important in defining their medical properties. The
anticancer activities of these saponins depend on the number of
sugar molecules and on their attachment position [162]. Protopa-
naxadiol and protopanaxatriol ginsenosides with no sugar resi-
dues or PPT and PPD ginsenosides containing up to three sugar
residues inhibited different types of cancer, while others contain-
ing a higher amount of sugar residue showed none or very weakly
antiproliferative effects [166–168]. Furthermore, it has been
shown that the biological response of different types of ginseno-
sides is also related to the number and positions of the hydroxyl
groups, which reflects the polarity of these molecules and thus
facilitates the interaction with the cell membrane [169–172]. Al-
so, differences in stereochemistry were demonstrated to produce
different pharmacological effects [173].

The biosynthetic pathway of ginsenosides is not entirely char-
acterized and many steps still need to be elucidated. The studies
so far show that the main precursor used for the triterpene ginse-
nosides is squalene, which is formed from the condensation of
two farnesyl pyrophosphate (FPP) molecule. The synthesis of each
FPP requires the condensation of one dimethylallyl pyrophosphate
(DMAPP) with two molecules of isopentenyl pyrophosphate (IPP).
IPP can be produced in the cytosol through the mevalonic acid
(MVA) pathway or in the chloroplast from the methylerythritol
(MEP) pathway [62]. The role of the plastidial IPP is still unclear
since ginsenoside biosynthesis mainly relies on the pool of cyto-
solic IPP [174], although a certain degree of compensation was
observed in case of inhibition of either MEV or MEP [175].

The crucial steps in the generation of ginsenoside diversity are
the cyclization of 2,3-oxidosqualene by oxidosqualene cyclases
(OSCs) and the subsequent hydroxylations and glycosylations
[176,177] (▶ Fig. 6). Dammarenediol synthase (DDS) is a mem-
ber of the family of OSCs, which is specifically found only in Panax
species [18]. Its encoding gene has been characterized as the very
first step in ginsenoside biosynthesis [178,179].

The product of this enzymatic conversion is dammarenediol,
which is the precursor of three of the four types of ginsenosides:
PPD-, PPT-, and ocotillol-type. In the next subsequent reactions,
the dammarenediol is hydroxylated in two consecutive reactions
to protopanaxadiol and protopanaxatriol by protopanaxadiol and
protopanaxatriol synthases (PPDS and PPTS, members of the cy-
tochrome P450 family). Both protopanaxadiol and protopanaxa-
triol are further glycosylated by uridine diphosphate (UDP)-de-
pendent glycosyltransferases (UGTs), whose genes remain to be
identified. Extensive additional glycosyl decorations give rise to
the diversity of all detected ginsenosides [180]. Recent studies
provided a better understanding of a part of PPT-type biosyn-
thetic pathway by characterization of four P. ginseng UGTs catalyz-
ing protopanaxatriol glycosylations [181].

The biosynthesis of the oleanane-type ginsenosides starts al-
ways from 2,3-oxidosqualene, which is then cyclized to β-amyrin
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873



▶ Fig. 6 Ginsenoside biosynthesis. The crucial step in the generation of ginsenoside diversity is the cyclization of 2,3-epoxysqualene. One of the
cyclization reactions leads to the production of β-amyrin, which is precursor of the oleanane-type ginsenosides. An alternative cyclization of 2,3-
epoxysqualene, catalyzed by DDS, leads to the formation of dammarenediol, which is then the precursor of ocotillol-, PPT-, and PPD-type ginse-
nosides. Compound K is a dammarenediol-type ginsenoiside isolated from human blood after oral administration of P. ginseng and has not been
detected so far in Panax plants. Many of the enzymatic steps in the ginsenoside biosynthesis have not been well characterized, but two gene fam-
ilies play key roles in generating ginsenoside diversity: the CYPs and the UGTs. SE: squalene epoxidase; β-AS: β-amyrin synthase; OAS: oleanane acid
synthase; GT glycosyltransferase; UGT UDP-glycosyltransferase. Reactions with genes marked in red indicate hypothetical steps. Dashed arrows
indicate multiple steps.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
by β-amyrin synthase and converted to oleanolic acid by the ac-
tion of oleanane acid synthase, member of the cytochrome
P450s family. The remaining reactions, leading to glycosylated
oleanane-type ginsenosides, are catalyzed by additional UGT
genes that have not been identified so far (▶ Fig. 6).

In the last years, a novel dammarenediol-type ginsenoside
(compound K) has been isolated from human blood after oral ad-
ministration of ginseng [182]. Interestingly, compound K has
been never detected in Panax plants. The authors suggested that
this novel ginsenoside could actually represent a minor compo-
nent whose biosynthesis may actually occur in Panax plants, since
the transcripts encoding two of the fundamental enzymes
(CYP716A47 and UGTPg1) responsible for its conversion are
present in P. ginseng tissues. Compound K could possess a number
of beneficial effects for human health, given its anticancer, anti-
diabetes, and anti-inflammatory properties tested in vitro [183,
184]. Currently, compound K is synthesized from deglycosylation
of PPD-type ginsenosides [185].
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
Given the medicinal importance of ginsenosides, a number of
bioengineering strategies have been developed in order to in-
crease their production and to compensate the time required for
field cultivation, which generally involves four to six years. Four
different main strategies have been undertaken to synthesize gin-
senosides in native and heterologous hosts: (i) developing cell and
tissue culture methods [186]; (ii) adventitious root cultures [187];
(iii) transgenic plants [188]; and (iv) engineered yeast systems
[189].

The first tissue culture of ginseng was reported in 1964 [190],
and many other successful studies followed afterward [191,192].
The effects of different growth regulators on the final product for-
mation have been evaluated, including sucrose (used as the most
common carbon source in ginseng cultures), phosphate, copper,
and nitrate. These investigations showed that the rate of biomass
growth and the respective ginsenoside content correlated directly
with the medium sugar concentration (up to 60 g L−1). Higher
sugar concentrations inhibited cell growth and had a negative im-
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pact on ginsenoside production [193]. Phosphate, copper, and ni-
trates in different concentrations improved the ginsenoside yield
and thus stimulated ginsenoside production in cell cultures [194,
195].

An example of the tissue culture approach is using adventitious
roots as high biomass producers and studying the effect of differ-
ent treatments or chemical elicitors [189,196,197]. As the major
physiological role of the ginsenosides is related to plant defense
[198,199], stress-inducible factors have been used in order to im-
prove their production. Treatments with methyl jasmonate and
salicylic acid generally induced oxidative stress and increased gin-
senoside content, as well as gamma-irradiation, which enhanced
the final product up to 16-fold [200,201].

In addition to the cell and tissue culture methods, genetic en-
gineering methods have been used successfully to up- and down-
regulate key genes involved in ginsenoside biosynthesis, such as
3-hydroxy-3-methylglutaryl coenzyme A, squalene synthase (SS),
cytochrome p450 (CYPs), and DDS. Transgenic plants over-
expressing these genes showed an increased amount of ginseno-
sides [188,202–204].

Successful achievements of producing PPD, PPT, oleanolic ac-
id, and compound K have been also made by using engineered
yeast strains [185,203,205].

All these works provide an insight into the complex mecha-
nisms of ginsenoside biosynthesis and explore new methods for
large-scale production of these important pharmacological com-
pounds. Nevertheless, many efforts still need to be done in order
to further elucidate the biochemical pathways leading to ginseno-
side formation, as well as to clarify the events responsible for their
diversification in Panax species. Further studies are needed to im-
prove the current available platforms and resources, as well as to
advance the knowledge about their clinical applications.
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Withanolides
Withanolides are a group of naturally occurring C-28 oxygenated
steroidal lactone triterpenoids that have been found in at least
15 genera of Solanaceae (e.g., Withania, Tubocapsicum, Lycium,
Datura, to mention few). Their presence has been reported also
in Fabaceae (legumes) and Lamiaceae (the family to which most
aromatic plants belong) [206]. Within Solanaceae, the shrub
Withania somnifera (L.) Dunal (“Indian ginseng” or “Ashwagan-
dha”) has been the focus of several pharmacological studies, giv-
en its wide use in Ayurveda (the major system of Indian traditional
medicine) as a general tonic to increase vigor and memory and
lessen the symptoms associated to rheumatisms, fatigue, and de-
hydration [207]. On the basis of the anecdotal reports from the
Ayurvedic practices, W. somnifera extracts were subjected to in-
tense pharmacological scrutiny and showed to possess promising
antitumor and anti-inflammation properties [208–210].

Despite the growing relevance of withanolides in medical re-
search (which we will cover in detail further below), information
about their biosynthetic routes and pathway regulation in planta
remain scarce. Over the past years, more than 200 different
withanolides have been isolated from roots, berries, and leaves
ofW. somnifera [19]; the focus of most of the pharmacological re-
search was placed, however, almost exclusively on Withaferin A
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(▶ Fig. 7), the first withanolide to be isolated from W. somnifera
[211]. In general, we now know that the C28-steroidal lactones
are biosynthesized from the C5-terpenoid precursors IPP and
DMAPP. As in the case of ginsenosides, the key step in the synthe-
sis of withanolides is the cyclization of 2,3-oxidosqualene. In the
biosynthesis of withanolides, the product of this reaction is cyclo-
artenol, which is then converted to 24-methylenecholesterol, the
precursor of all withanolides (▶ Fig. 7). Methylenecholesterol is
then subjected to a series of hydroxylations, elongations, glycosy-
lations of the carbocyclic skeleton, and further cyclization of its
side chain, resulting in compounds with complex structural fea-
tures [212–216]. According to the difference in the substituted
groups of C-17 side chain, withanolides can be divided into two
types; type A with a δ-lactone or δ-lactol and type B with γ-lactone
or γ-lactol side chain [217]. Some recent investigations have
identified putative regulatory and structural genes involved in
withanolide biosynthesis [218–221].

As we have already mentioned, in the past few decades,
withanolides attracted considerable research attention, and sev-
eral studies were carried out to investigate the pharmacological
and biological activities of this class of metabolites and their role
in human medicine. Withanolide extracts from W. somnifera
showed to possess anti-inflammatory, cytotoxic and antitumor
activities [222]; there are also indications that the administration
ofWithania extracts improved memory retention in rats [223] and
cognitive functions in humans [224,225]. Withanolide A, witha-
nolide B, withaferin A, and withanone, in particular, showed pro-
tective effect on the neuronal tissues of frontal cortex and corpus
striatum in rats and prevented increase of lipid peroxidation [226,
227]. These early investigations on the effects of Withania ex-
tracts in attenuating cerebral functional deficits led to more tar-
geted studies on the potential beneficial effects of withanolides
in neurodegenerative diseases. Recent studies showed, for exam-
ple, that a root extract of W. somnifera was effective in decreasing
the accumulation of β-amyloid peptides in the brains of rats af-
fected by Alzheimerʼs disease [228]. Also, a crude Withania ex-
tract relieved significantly the symptoms of drug-induced parkin-
sonism (tremor, rigidity) in model rats [229].

Withanolides have also shown promising antitumor activities.
Withanolide A and Withaferin A are two of the best studied with-
anolides for their capacity to significantly reduce the survival of
various cancer cell lines and decrease the size of breast tumors im-
planted in rats [230–232]. The effect of Withaferin A, in particular,
seems related to its capacity to interfere in the pathways of pro-
tein degradation and recycling (which are highly active in cancer
cells), through inhibition of tubulin polymerization: this inhibition
would prevent the formation of autophagy-related structures,
which are essential for protein recycling [233].

Also, other withanolides (e.g., withanolide D, 17α-hydroxy-
withanolide D, physagulines) were extracted from stems, roots,
and leaves of Tubocapsicum anomalum (Franch. & Sav.) Makino
(Solanaceae) and Physalis angulata L. (Solanaceae), and all exhib-
ited high and significant cytotoxicity against several human can-
cer cell lines [234–236].

Despite the increasing evidence concerning the beneficial ef-
fects of these compounds, there are still many areas that remain
to be investigated, especially regarding the biosynthesis and reg-
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873



▶ Fig. 7 Overview of withanolide biosynthesis. The precursor of all withanolides is 24-methylencholesterol, which undergoes a series of hydroxyl-
ations and further modifications of the side chain in a series of steps not yet completely elucidated. Methylencholesterol is a downstream product
of cycloartenol, which is in turn derived from the cyclization of 2,3-epoxysqualene. Withaferin A (red) was the first withanolide to be isolated from
W. somnifera and is today the best characterized in terms of pharmacological effects. Abbreviations: SE: squalene epoxidase; CAS: cycloartenol
synthase. Dashed arrows indicate multiple steps.
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ulation of the withanolide pathway. W. somnifera is an important
and highly valued plant in traditional medicine and showed prom-
ising effects in small-scale clinical trials [237,238]. In the future,
the full elucidation of withanolide biosynthesis will help to transfer
the pathway to heterologous hosts for cost-effective biosynthesis
of the active components; on the other hand, the development of
biotechnology protocols forWithania spp. will guide future efforts
for functional studies in this important genus and will provide the
genetic materials for targeted breeding and commercial exploita-
tion.
Artemisinin
Artemisinin is a sesquiterpene lactone isolated from the Chinese
herb Artemisia annua L. (Asteraceae), known as qinghaosu (sweet
worm-wood) in traditional medicine, and mainly used for its anti-
malarial effect. In addition to that, recent studies showed promis-
ing anticancer, antiviral, and anti-inflammatory activities [239].

The first report on the healing properties of A. annua extracts
dates back to 340 AD by Ge Hong in his book Zhou Hou Bei Ji Fang
(A Handbook of Prescriptions for Emergencies). It was only in 1971,
however, that the active compound was isolated and character-
ized, due to the work of the Chinese chemist Youyou Tu [240,
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
241], who was later awarded the Nobel prize for medicine in
2015 for her discovery of artemisinin.

Artemisinin became essential in the treatment of uncompli-
cated malaria caused by the parasite Plasmodium falciparum and
has established itself as the most potent of all antimalarial drugs
[242]. Although the mechanism of action is still not completely
understood, the use of artemisinin and its derivatives in combined
therapies contributed significantly to the reduction in malaria
mortality [243]. Artemisinin is currently the first-line treatment
against malaria [244,245], despite the emergence in recent years
of cases of resistance in Southeast Asia. Recent studies showed
that the resistance is mainly due to the K13 mutation in P. falcipa-
rum parasites [246,247].

Given the complex structure of natural artemisinin, the main
commercial source for this compound so far is the natural plant.
Artemisinin is produced by the glandular trichomes of A. annua,
but its accumulation in planta is low (0.01–1.4% dry weight) and
highly dependent on the plant variety [248]. Based on this, the ex-
traction of artemisinin is relatively expensive and its production
cannot meet the global demand.

In order to face these fundamental problems, many efforts to
increase artemisinin production have been attempted. Significant
results in this direction were obtained in the field of molecular
biology, synthetic biology, and genetic and metabolic engineer-
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ing. All these achievements would have not been possible without
the characterization of the genes and enzymes related to artemis-
inin biosynthesis. In the early studies, radioactive-isotope labeling
has been used to show that artemisinin derives from IPP and
DMAPP, which are synthesized both from the cytosolic mevalo-
nate (MVA) and from the plastidial 2-c-methyl-d-erythritol 4-
phosphate (MEP) pathway [249–252]. The condensation of two
molecules of IPP with one molecule of DMAPP forms FPP, which
is then converted to amorpha-4,11-diene by amorphadiene syn-
thase (ADS) [253]. Amorphadiene is subsequently oxidized, first,
to artemisinic alcool and then to artemisinic aldehyde by a
CYP71AV1 and its redox partner cytochrome P450 reductase
(CPR) [254,255]. Artemisinic aldehyde is then converted to dihy-
droartemisinic aldehyde by the enzyme DBR2 (artemisinic alde-
hyde Δ11(13) reductase) and oxidized to dihydroartemisinic acid
(DHAA) by aldehyde dehydrogenase (ALDH1) [256,257]. The ex-
port of DHAA to the trichome and its photoxidation then yields ar-
temisinin (▶ Fig. 8).

The elucidation of the artemisinin biosynthetic pathway has
been a fundamental step in exploring and developing the bioen-
gineering tools used to enhance its production. Different direc-
tions have been undertaken in order to improve the artemisinin
biosynthesis in the same A. annua species or in different host or-
ganisms.

Germplasm selection and breeding have been used for creat-
ing superior cultivars [258]. The studies reported so far describe
a number of cultivars with increased artemisinin content from 1
to 2.4% (DW), but due to instable artemisinin production, these
lines have not been considered as a valuable commercial source
[259,260].

Transgenic A. annua plants have also been produced with the
aim of increasing the amount of artemisinin. In general, two main
strategies have been used: the first one based on the overexpres-
sion of structural or regulatory genes [261–263], and the second
one based on the inhibition of competing pathways, such as, for
example, the squalene pathway [264].

Overexpression of several genes responsible for key steps of ar-
temisinin biosynthesis, such as farnesyl pyrophosphate synthase
(FPS), ADS, CYP71AV1, CPR, and DBR2 led to approximately a
double increase of artemisinin production [265–267].

Based on these conclusions, many research groups focused
their interest in co-overexpressing two or more genes in A. annua
to further increase the amount of artemisinin [262,263]. For ex-
ample, co-overexpression of FPS, CYP71AV1, and CPR genes in-
creased the artemisinin content by 3.6 fold (2.9mg/g fw) in com-
parison with control plants [267], and the simultaneous over-
expression of ADS, CYP71AV1, and CPR resulted in 2.4-fold in-
crease of artemisinin (15.1mg/g DW) compared to control plants
[268].

Recently, several transcription factors of different families, in-
cluding WRKY, bHLH, NAC, and MYC have been isolated and char-
acterized in A. annua. The overexpression of these genes also in-
creased the final amount of total artemisinin [261,266,269–271].

The other approach used to enhance the artemisinin amount is
to block the key enzymatic steps in competitive pathways to di-
vert the flow predominantly into artemisinin biosynthesis [262].
Inhibition of the expression of the SS gene, which uses farnesyl
870
pyrophosphate as a substrate and catalyzes the first step of the
sterol pathway, increasing the artemisinin content up to
31.4mg/g (a three-fold increase with respect to control plants)
[264].

In order to explore the metabolic engineering approaches for
alternative artemisinin production, several heterologous hosts
have been tested. The steps leading to the synthesis of amorpha-
diene have been engineered in E. coli by introducing the MVA
pathway from yeast (S. cerevisiae) and a synthetic ADS gene
[272]. The results obtained reached a titer of 300mg/L amorpha-
diene [273].

Another attempt to enhance artemisinin production has been
made in plant hosts. Nicotiana species have been selected as po-
tentially the most suitable ones because of their favorable charac-
teristics (rapid growth and high biomass) [263]. An innovative ap-
proach consisted in the insertion of biosynthetic genes in both the
nucleus and chloroplast genomes, leading to a final yield of
120 µg/g artemisinic acid [274]. Despite these efforts, however,
the production levels in Nicotiana remained low and therefore
not suitable for commercial production.

To date, the most prominent achievement in the field of meta-
bolic engineering is the production of artemisinic acid in yeast. In
this case, the MVA pathway has been introduced into S. cerevisiae
along with ADS and CYP71AV1, allowing the conversion of amor-
phadiene to artemisinic acid in three oxidation steps. As a result,
around 100mg/L of artemisinic acid have been obtained [254].
The system was further improved by the introduction of two addi-
tional enzymes, a plant dehydrogenase (ADH1) and a second cy-
tochrome (CYB5), which were both positive regulators of artemis-
inin biosynthesis. The process reached titers up to 25mg/L of ar-
temisinic acid, which is the maximum amount achieved so far
[275]; this improved yeast system has, however, found modest
market impact due to the lower costs associated to the direct ex-
traction of artemisinin from plants [276].
Taxol
Taxol (paclitaxel) is a complex diterpenoid extracted from the
bark of the pacific yew (Taxus brevifolia Nutt., family Taxaceae), a
tree native to the west coastal region of North America. In 1960,
taxol was discovered during a large phytochemical screening
aimed at the identification of cytotoxic natural products from
plants. This effort was jointly conducted by the National Cancer
Institute and the U.S. Department of Agriculture [277,278]. Taxol
belongs to a large family of taxoids (taxane diterpenoids) that ac-
cumulate in Taxus species, where they play an important role in
plant defense. Taxoids deter the feeding activities of mammals
and insects and protect the plants from fungi colonization [279].

Taxol is formed by a tetracyclic oxaheptadecane skeleton dec-
orated with eight functional oxygen groups, two acyl groups, and
a benzyl group [280]. After the elucidation of its structure in 1971
[277], several clinical trials led to its approval by the FDA as an
anticancer drug for the treatment of a wide range of cancers
(ovarian, breast, lung, Kaposiʼs sarcoma, cervical, and pancreatic)
[281]. Since then, taxol has become a leading anticancer drug,
whose total sales exceed several billion U. S. dollars per year
[282]. The mechanism of action of taxol is based on its capacity
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873



▶ Fig. 8 Metabolic pathway of artemisinin biosynthesis. The first step of artemisinin synthesis is the condensation of IPP/DMAPP into farnesyl-
pyrophosphate (FPP). FPP is then cyclized to amorphadiene by ADS and further oxidized to artemisinic alcohol and artemisinic aldehyde by
CYP71AV1 and its redox partner CPR. Artemisinic aldehyde is converted to dihydroartemisinic aldehyde by DBR2, and then to DHAA by ALDH1.
Artemisinin is produced by spontaneous photo-oxidation of DHAA.
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to interfere with the function of microtubules during cell division,
causing their polymerization even at low temperatures. This prop-
erty renders taxol highly cytotoxic to cancer cells [281].

The amount of taxol that can be extracted from the bark of the
adult trees of T. brevifolia is however, extremely low. Around 12 kg
of bark material yield only 0.5 g of purified taxol [278]; therefore,
alternatives sources or methods for taxol production must be de-
veloped to avoid the need to rely on destructive bark harvesting
[283].

In addition to that, the knowledge of the pathway of taxol bio-
synthesis remains incomplete. Of the 20 hypothesized enzymatic
steps, only 14 have been well characterized [280,284,285]
(▶ Fig. 9). The current understanding of the taxol biosynthetic
pathway includes at least eight oxidation steps, five acetyl/aroyl
transferase steps, a C4β,C20-epoxidation reaction, a phenylala-
nine aminomutase step, N-benzoylation, and two CoA esterifica-
tions [282]. The presence of several putative enzymes in the path-
way was recently suggested by analyzing the transcripts of Taxus
baccata L. cells elicited with methyl jasmonate [285].

The precursors of taxol are IPP and DMAPP from the plastidial
MEP pathway. Geranylgeranyl pyrophosphate synthase catalyzes
the condensation of three molecules of IPP and one of DMAPP in-
to geranylgeranyl pyrophosphate (GGPP), which is then cyclized
by taxadiene synthase into taxa-4(5),11(12)-diene (taxadiene).
Taxadiene is then the central precursor from which all taxane
diterpenoids originate. In the branch leading to taxol biosynthesis,
taxadiene is hydroxylated by different P450 hydroxylases. The or-
der of the reactions and some of the genes responsible for these
subsequent catalytic steps are, however, not clear yet: from the
isolation of the putative intermediates, several hydroxylations
should occur at positions C1, C2, C4, C7, and C9, as well as a fur-
ther oxidation at C9 and a C4β,C20 epoxidation. The product of
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this series of poorly characterized steps is baccatin III, a key inter-
mediate that can be also extracted from the needles of T. brevifolia
and constitutes the starting substrate for semisynthesis of taxol
and other taxane diterpenoids [280]. Baccatin III is then esterified
on C13 with a β-phenylalanoyl moiety yielding 3′-N-debenzoyl-2′-
deoxy-taxol, in a reaction catalyzed by baccatin III: 3-amino,13-
phenylpropanoyltransferase (▶ Fig. 9).

From 3′-N-debenzoyl-2′-deoxy-taxol, the last two steps of the
biosynthesis leading to taxol require the hydroxylation and termi-
nal N-benzoylation of the β-phenylalanine side chain by a yet un-
characterized taxane-2′α-hydroxylase and a N-benzoyl transferase
(DBTNBT) [21,285].

Today, the supply of taxol for medical use cannot be achieved
from natural sources. As a consequence of the initial overharvest-
ing of the bark for taxol extraction, T. brevifolia is now in a near
threatened state [286]. On the other hand, total chemical synthe-
sis of taxol, which was achieved in 1994 [287], has never been
considered as an economically feasible alternative, due to the high
complexity of the process. The current standard for taxol prod-
uction is now semisynthesis, starting from the isolation of the in-
termediates baccatin III or 10-deacetylbaccatin III from Taxus cell
cultures. Taxol can also be produced entirely from Taxus cell sus-
pension cultures. The whole process, after decades of optimiza-
tion based on the use of chemical elicitors (e.g., methyl jasmo-
nate) and improvement of growth conditions, has now reached
yields in the range of several hundred mg per liter of culture
[282,288].

A partial alternative to Taxus cell culture was represented by
the transfer of the known part of the pathway–up to taxadiene–
to E. coli. Bacteria (and yeast) offer in fact a higher growth rate
with respect to plant cell cultures and are generally easier to ma-
nipulate. The insertion of two pathway modules into E. coli (the
871



▶ Fig. 9 Overview of taxol biosynthesis. The pathway leading to taxol is composed by at least 20 enzymatic steps; of these, only 14 have been
characterized (enzymes in red indicate hypothetical steps). TXS: taxadiene synthase; T5αOH: taxane 5α-hydroxylase; TAT: taxadiene-5α-ol-O-acetyl
transferase; T10βOH: taxane 10β-hydroxylase; T13αOH: taxane 13α-hydroxylase; T2αOH: taxane 2α-hydroxylase; T9αOH: taxane 9α-hydroxylase;
T7βOH: taxane 7β-hydroxylase; T1βOH: taxane 1β-hydroxylase; TBT: taxane-2α-O-benzoyltransferase; DBAT: 10-deacetyl baccatin III-10-O-acetyl-
transferase; T2′OH: taxane 2′a-hydroxylase; PAM: phenylalanineaminomutase; TBPCCL: β-phenylalanine coenzyme A ligase. Figure modified from
[280].
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MEP pathway and the GGPP synthase/taxadiene synthase path-
way) resulted in final yield of around 1 g/L of taxadiene. Although
taxadiene is a distant precursor of baccatin III (and thus several
steps–some of which still unknown–separate taxadiene from
taxol), the metabolic engineering of E. coli was an important
achievement for the future full transfer of this important pathway
to a microbial host [289].
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Bioinformatic Resources
for Medicinal Plants

In recent years, the decreasing costs associated with sequencing
and assembly of genomic data led to the release of a high number
of whole-plant genome sequences, including several from medic-
inal plants [290]. In some cases, as we detail below, this was ac-
companied by the development of several communal bioinfor-
matics resources that integrated various types of omics datasets.
Clearly, given the complexity of secondary metabolism of medici-
nal plants with respect to crops and model plants species, these
resources offer the opportunity to mine specifically the metabolic
pathways of medicinal plants and correlate, for example, the
number of specific metabolites with the genomic data (e.g., gene
expression, sequence polymorphisms). We provide below a sur-
872
vey of the main genomic databases that have been recently devel-
oped for some of the most studied medicinal plants.

Medicinal Plant Genomics Resource [291] is an example of a
large, collaborative effort between several research institutions
containing genome and metabolome data of 14 taxonomically
diverse medicinal species, including Atropa belladonna L. (family
Solanaceae), C. sativa, C. roseus, Panax quinquefolius L. The website
offers an easy-to-use interface for a BLAST (basic local alignment
search tool) search against the sequenced species and provides
access to the various genome browsers of medicinal plants. The
files related to the genome and transcript assemblies are also
available for download. C. acuminata (the “happy tree” of Chinese
traditional medicine, [292]), Calotropis gigantea (L.) W.T. Aiton (a
shrub of the Apocynaceae family growing in Southeast Asia, which
is known for producing cardiac glycosides [293]), and a new vari-
ety of C. roseus are the latest medicinal plants whose genomic and
transcriptomic data have been added to the database. The data-
base also contains metabolic profiling data (mainly acquired
through LC‑MS), collected from several tissues of medicinal
plants.

Another example of a resource offering a range of tools for vi-
sualization and analysis of metabolic networks and ʼomicsʼ data is
CathaCyc, a metabolic pathway database built from metabolic
and RNA‑seq data of the plant C. roseus [82]. CathaCyc is a reposi-
tory for genes, enzymes, reactions, and pathways of primary and
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
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secondary metabolism; it contains 390 pathways with more than
1300 enzymes. The database also integrates the draft genome
data of C. roseus [74]. The enzymes in CathaCyc have also been
linked to ORCAE [294], a genome annotation resource, allowing
the users to validate and edit gene annotations [295].

In 2011, a consortium of U.S. research organizations, funded
by NIH, launched the project Transcriptome Characterization,
Sequencing, and Assembly of Medicinal Plants Relevant to
Human Health [296]. Currently, the database contains transcrip-
tome data related to 31 species of medicinal importance, includ-
ing, among others, Cinchona pubescens Vahl (the quinine tree,
family Rubiaceae), Colchicum autumnale L. (family Colchicaceae,
the source of colchicine), Datura stramonium L. (family Solana-
ceae), and Podophyllum peltatum L. (family Berberidaceae)
(mayapple; the roots of Podophyllum accumulate podophyllo-
toxin, the precursor of the chemotherapeutic etoposide [297]).

Recently, another database has been established within the
Phytometasyn project (www.phytometasyn.ca). It contains de
novo transcript assemblies of around 20 medicinal plants includ-
ing the plant Eschscholzia californica Cham. (California poppy, a
member of Papaveraceae accumulating several active BIAs,
mainly those of the pavine-type, e.g., eschscholtzidine [83]).
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Future Prospects
For centuries, plants have always been used as remedies to treat a
great number of symptoms. Even today, a large part of the world
population relies on herbal medicines as a major source of health
care, especially in Asia, Africa, and Latin America. In some rural
areas, traditional medicines based on herbal drugs are the only
source of health care. Almost 30% of the modern drugs we use to-
day are actually derived from natural products; an ever-increasing
number of these, coming from plants, are now in the process of
being approved for market either as main active ingredients or as
supplements. Several clinical trials of herbal medicines are now
underway in the United States for the treatment of food allergies,
asthma, and gastric inflammation [298].

We are now at the beginning of a new phase in which integra-
tive approaches of genomics and metabolomics are applied to the
study of the metabolism of medicinal plants. These approaches
have begun to revolutionize our understanding of at least two
main aspects of herbal medicines: (i) the biosynthesis, and path-
way regulation, of many plant secondary metabolites of medicinal
importance [290]; (ii) the mechanism of action of many of these
plant herbal components on human metabolism and health [299,
300]. We see in this avalanche of knowledge both challenges and
avenues for further research. We think there is a urgent need to
develop faster, more informative and comprehensive analytical
approaches for profiling and characterizing a larger number of
metabolites; these challenges can be overcome also with the de-
velopment of computational metabolomics strategies for metab-
olite annotation [301,302], de novo pathway reconstruction
[303], and analysis of natural variation [304]. We clearly recognize
the long history and the potential of traditional medicines as a
source of well-being, but we also reason that a more intense scru-
tiny should be conducted on herbal drugs–including rigorous
studies on their chemical composition and clinical trials–before
Scossa F et al. The Integration of… Planta Med 2018; 84: 855–873
claims could be made in relation to their therapeutic efficacy. This
new knowledge could then be used–as we have seen in the case
studies presented here (especially in the case of artemisinin)–to
set up platforms for metabolic engineering and enable sustainable
production of medicinal phytochemicals. Finding alternative ways
for production of these compounds–outside of their respective
native plant hosts–is also relevant to preserve natural resources
in their native habitats, as the case of taxol has shown during the
initial overharvesting of T. brevifolia. Scientists and policy makers
need to find a better balance to promote a sustainable use of ge-
netic resources, especially from the hot spots of world biodiversity
(e.g., the Amazonian forest). A new equilibrium need to be estab-
lished between ecological conservation and bioprospecting for
novel drug discoveries from plants [11].
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