Klin Monbl Augenheilkd 2018; 235(06): 709-713
DOI: 10.1055/a-0577-7953
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Medical and Semi-surgical Treatments for Fuchs Endothelial Corneal Dystrophy

Interventionelle und pharmakologische Behandlungsansätze für Fuchs-Endotheldystrophie
Katrin Wacker
1   Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
2   Eye Clinic, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Keith H. Baratz
1   Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
,
Michael P. Fautsch
1   Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
,
Sanjay V. Patel
1   Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
› Author Affiliations
Further Information

Publication History

received 07 December 2017

accepted 06 February 2018

Publication Date:
03 May 2018 (online)

Abstract

Unraveling the genetic mechanisms of Fuchs endothelial corneal dystrophy has opened new possibilities for future targeted medical therapy of the disease. Until these possibilities mature, regenerative semi-surgical approaches by cell injection or cell sheet transfer could help expand the donor pool, and possibly enable autologous transplantation. Descemet membrane stripping alone and acellular Descemet membrane transfer are more immediate surgical approaches that could be temporary treatments in some patients, though there is a lack of understanding of the factors that predict success for these procedures. Regardless of approach, clinical trials will be necessary, and clinicians should therefore try to standardize their methods of assessing disease severity and the outcomes of intervention.

Zusammenfassung

Ein Verständnis der genetischen Grundlagen der Fuchs-Endotheldystrophie eröffnet die Möglichkeit zukünftiger gezielter, nicht operativer Therapien. Bis diese Therapien ausgereift sind, könnten neue regenerative therapeutische Ansätze wie die Injektion von Endothelzellen oder der Transfer kultivierter Endothelzellschichten helfen, die Verfügbarkeit von Donorgewebe zu verbessern und vielleicht sogar autologe Transplantationen zu ermöglichen. Eher temporäre operative Ansätze für ausgewählte Patienten sind das alleinige Stripping und der azelluläre Transfer der Descemet-Membran, obgleich unklar ist, welche Patienten am meisten von diesen Verfahren profitieren können. Für alle Behandlungsverfahren werden klinische Studien notwendig sein, weshalb Kliniker anstreben sollten, die Bestimmung des Schweregrads der Fuchs-Endotheldystrophie und der postoperativen Erfolgsparameter zu standardisieren.

 
  • References

  • 1 Patel SV. Graft survival and endothelial outcomes in the new era of endothelial keratoplasty. Exp Eye Res 2012; 95: 40-47
  • 2 Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci 2015; 134: 7-23 doi:10.1016/bs.pmbts.2015.04.001
  • 3 Baratz KH, Tosakulwong N, Ryu E. et al. E2–2 protein and Fuchsʼs corneal dystrophy. N Engl J Med 2010; 363: 1016-1024
  • 4 Afshari NA, Igo jr. RP, Morris NJ. et al. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat Commun 2017; 8: 14898
  • 5 Biswas S, Munier FL, Yardley J. et al. Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet 2001; 10: 2415-2423
  • 6 Vithana EN, Morgan PE, Ramprasad V. et al. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum Mol Genet 2008; 17: 656-666
  • 7 Mehta JS, Vithana EN, Tan DTH. et al. Analysis of the posterior polymorphous corneal dystrophy 3 gene, TCF8, in late-onset Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 2008; 49: 184-188
  • 8 Riazuddin SA, Zaghloul NA, Al-Saif A. et al. Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. Am J Hum Genet 2010; 86: 45-53
  • 9 Weiss JS, Moller HU, Aldave AJ. et al. IC3D classification of corneal dystrophies – edition 2. Cornea 2015; 34: 117-159
  • 10 Wieben ED, Aleff RA, Tosakulwong N. et al. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One 2012; 7: e49083
  • 11 Wieben ED, Aleff RA, Tang X. et al. Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene leads to widespread mRNA splicing changes in Fuchsʼ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 2017; 58: 343-352
  • 12 Okumura N, Koizumi N, Kay EP. et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci 2013; 54: 2493-2502
  • 13 Okumura N, Koizumi N, Ueno M. et al. Enhancement of corneal endothelium wound healing by Rho-associated kinase (ROCK) inhibitor eye drops. Br J Ophthalmol 2011; 95: 1006-1009 doi:10.1136/bjo.2010.194571
  • 14 Okumura N, Ueno M, Koizumi N. et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci 2009; 50: 3680-3687
  • 15 Koizumi N, Okumura N, Ueno M. et al. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea 2014; 33 (Suppl. 11) S25-S31
  • 16 Koizumi N, Okumura N, Ueno M. et al. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. Cornea 2013; 32: 1167-1170
  • 17 Patel SV, Baratz KH, Hodge DO. et al. The effect of corneal light scatter on vision after descemet stripping with endothelial keratoplasty. Arch Ophthalmol 2009; 127: 153-160
  • 18 Price MO, Price FW. Endothelial keratoplasty – a review. Clin Experiment Ophthalmol 2010; 38: 128-140
  • 19 Okumura N, Okazaki Y, Inoue R. et al. Rho-associated kinase inhibitor eye drop (Ripasudil) transiently alters the morphology of corneal endothelial cells. Invest Ophthalmol Vis Sci 2015; 56: 7560-7567
  • 20 Okumura N, Sakamoto Y, Fujii K. et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep 2016; 6: 26113
  • 21 Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemetʼs membrane. I. Changes with age in normal corneas. Arch Ophthalmol 1982; 100: 1942-1947
  • 22 Melles GR, Wijdh RH, Nieuwendaal CP. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea 2004; 23: 286-288
  • 23 Price MO, Price FW. Descemetʼs stripping endothelial keratoplasty. Curr Opin Ophthalmol 2007; 18: 290-294
  • 24 Amin SR, Baratz KH, McLaren JW. et al. Corneal abnormalities early in the course of Fuchsʼ endothelial dystrophy. Ophthalmology 2014; 121: 2325-2333
  • 25 Wacker K, McLaren JW, Amin SR. et al. Corneal high-order aberrations and backscatter in Fuchsʼ endothelial corneal dystrophy. Ophthalmology 2015; 122: 1645-1652
  • 26 Stone DL, Kenyon KR, Stark WJ. Ultrastructure of keratoconus with healed hydrops. Am J Ophthalmol 1976; 82: 450-458
  • 27 Inomata H, Smelser GK, Polack FM. Fine structure of regenerating endothelium and Descemetʼs membrane in normal and rejecting corneal grafts. Am J Ophthalmol 1970; 70: 49-64
  • 28 Watson SL, Abiad G, Coroneo MT. Spontaneous resolution of corneal oedema following Descemetʼs detachment. Clin Experiment Ophthalmol 2006; 34: 797-799
  • 29 Pan JC, Au Eong KG. Spontaneous resolution of corneal oedema after inadvertent ‘descemetorhexis’ during cataract surgery. Clin Exp Ophthalmol 2006; 34: 896-897
  • 30 Braunstein RE, Airiani S, Chang MA. et al. Corneal edema resolution after “descemetorhexis”. J Cataract Refract Surg 2003; 29: 1436-1439
  • 31 Dirisamer M, Dapena I, Ham L. et al. Patterns of corneal endothelialization and corneal clearance after descemet membrane endothelial keratoplasty for Fuchs endothelial dystrophy. Am J Ophthalmol 2011; 152: 543-555.e541
  • 32 Moloney G, Chan UT, Hamilton A. et al. Descemetorhexis for Fuchsʼ dystrophy. Can J Ophthalmol 2015; 50: 68-72
  • 33 Koenig SB. Planned descemetorhexis without endothelial keratoplasty in eyes with Fuchs corneal endothelial dystrophy. Cornea 2015; 34: 1149-1151
  • 34 Shah RD, Randleman JB, Grossniklaus HE. Spontaneous corneal clearing after Descemetʼs stripping without endothelial replacement. Ophthalmology 2012; 119: 256-260
  • 35 Davies E, Jurkunas U, Pineda 2nd R. Predictive factors for corneal clearance after descemetorhexis without endothelial keratoplasty. Cornea 2018; 37: 137-140 doi:10.1097/ico.0000000000001427
  • 36 Reinhard T, Bohringer D, Huschen D. et al. [Chronic endothelial cell loss of the graft after penetrating keratoplasty: influence of endothelial cell migration from graft to host]. Klin Monatsbl Augenheilkd 2002; 219: 410-416
  • 37 Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty. Cornea 2016; 35: 1267-1273
  • 38 Patel SV, McLaren JW. In vivo confocal microscopy of Fuchs endothelial dystrophy before and after endothelial keratoplasty. JAMA Ophthalmol 2013; 131: 611-618
  • 39 Moloney G, Petsoglou C, Ball M. et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical Ripasudil. Cornea 2017; 36: 642-648
  • 40 Rizwan M, Peh GS, Adnan K. et al. In vitro topographical model of Fuchs dystrophy for evaluation of corneal endothelial cell monolayer formation. Adv Healthc Mater 2016; 5: 2896-2910
  • 41 Patel SV, Bachman LA, Hann CR. et al. Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci 2009; 50: 2123-2131
  • 42 Bhogal M, Lwin CN, Seah XY. et al. Allogeneic Descemetʼs membrane transplantation enhances corneal endothelial monolayer formation and restores functional integrity following Descemetʼs stripping. Invest Ophthalmol Vis Sci 2017; 58: 4249-4260
  • 43 Peh GSL, Adnan K, George BL. et al. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep 2015; 5: 9167
  • 44 Peh GSL, Chng Z, Ang HP. et al. Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant 2015; 24: 287-304
  • 45 Engelmann K, Bohnke M, Friedl P. Isolation and long-term cultivation of human corneal endothelial cells. Invest Ophthalmol Vis Sci 1988; 29: 1656-1662
  • 46 Engelmann K, Friedl P. Optimization of culture conditions for human corneal endothelial cells. In Vitro Cell Dev Biol 1989; 25: 1065-1072
  • 47 Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 2004; 45: 1743-1751
  • 48 Koizumi N, Sakamoto Y, Okumura N. et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci 2007; 48: 4519-4526
  • 49 Koizumi N, Sakamoto Y, Okumura N. et al. Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea 2008; 27 (Suppl. 01) S48-S55
  • 50 Parikumar P, John S, Senthilkumar R. et al. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheets. J Stem Cells Regen Med 2011; 7: 94
  • 51 Wacker K, Baratz KH, Maguire LJ. et al. Descemet stripping endothelial keratoplasty for Fuchsʼ endothelial corneal dystrophy: five-year results of a prospective study. Ophthalmology 2016; 123: 154-160
  • 52 Koizumi N, Okumura N, Kinoshita S. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models. Exp Eye Res 2012; 95: 60-67
  • 53 Okumura N, Kinoshita S, Koizumi N. Application of Rho kinase inhibitors for the treatment of corneal endothelial diseases. J Ophthalmol 2017; 2017: 8
  • 54 Seitz B, Hager T. Clinical Phenotypes of Fuchs endothelial corneal Dystrophy (FECD), Disease Progression, differential Diagnosis, and medical Therapy. In: Cursiefen C, Jun AS. eds. Current Treatment Options for Fuchs endothelial Dystrophy. Cham, Switzerland: Springer; 2017: 25-50
  • 55 Wacker K, McLaren JW, Patel SV. Optical and anatomical Changes in Fuchs endothelial Dystrophy Corneas. In: Cursiefen C, Jun AS. eds. Current Treatment Options for Fuchs endothelial Dystrophy. Cham, Switzerland: Springer; 2017: 51-71