Zeitschrift für Orthomolekulare Medizin 2018; 16(01): 4-10
DOI: 10.1055/a-0575-2894
Wissen
© Georg Thieme Verlag KG Stuttgart · New York

Mechanismen bei oxidativem Stress und Entzündung

Hans-Peter Friedrichsen
Further Information

Publication History

Publication Date:
23 April 2018 (online)

Zusammenfassung

Im Stoffwechsel entstehen ständig reaktive Substanzen, die zu oxidativem Stress führen und Proteine, Lipide und DNA schädigen können. Oxidativer Stress und Entzündung induzieren sich gegenseitig und sind Ursache vieler chronischer Krankheiten. Daher kommt der Erhaltung des Gleichgewichts zwischen Radikalbildung und antioxidativem Schutz große Bedeutung zu. Die Ernährung beeinflusst die Redoxregulation entscheidend: Hohe Zufuhr von Zucker und Fett erhöht die oxidative Belastung, während verschiedene Fettsäuren, Polyphenole, β-Karotin, Vitamin C und E antioxidative bzw. antiinflammatorische Wirkung besitzen.

 
  • Literatur

  • 1 Halliwell B. The antioxidant paradox: less paradoxical now? Br J Clin Parmacol 2013; 75 (03) 637-644
  • 2 Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2016; 8 (9–10): 1865-1879
  • 3 Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 2005; 38 (07) 995-1014
  • 4 Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nature Rev Immunol 2013; 13 (05) 349-361
  • 5 Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 2013; 339 (6116): 166-172
  • 6 Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 2001; 107 (01) 7-11
  • 7 Flohé F. et al. Redox regulation of NF-kappaB activation. Free Radic Biol Med ; 22 (06) 1115-1126
  • 8 Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol 2006; 6 (02) 111-130
  • 9 Vina J, Borras C, Gomez-Cabrera M. et al. Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radical Res 2006; 40 (02) 111-119
  • 10 Forman H, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochem 2010; 49 (05) 835-842
  • 11 Stojanovich L. Stress and autoimmunity. Autoimmunity Rev 2010; 9 (05) A271-A276
  • 12 Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol 2007; 292 (01) R18-R36
  • 13 Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Aspects Med 2008; 29 (1–2): 9-16
  • 14 Dalle-Donne I, Rossi R, Colombo R. et al. Biomarkers of oxidative damage in human disease. Clin Chem 2006; 52 (04) 601-623
  • 15 Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54: 176-186
  • 16 Cracowski JL, Durand T, Bessard G. Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol Sci 2002; 23: 360-366
  • 17 Oliveira-Marques V, Marinho HS, Cyrne L. et al. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal 2009; 11: 2223-2243
  • 18 Espinosa-Diez C, Miguel V, Mennerich D. et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6: 183-197
  • 19 Singh U, Devaraj S, Jialal I, Vitamin E. oxidative stress and inflammation. Ann Rev Nutr 2005; 25: 151-174
  • 20 Zhao G, Etherton TD, Martin KR. et al. Dietary α-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr 2004; 134 (11) 2991-2997