Comparative assessment of Montreal Cognitive Assessment (MOCA) and Minimental State Examination (MMSE) in apolipoprotein E (APOE) ε4 allele carriers in epilepsy

Amirthalingam Palanisamyα,* Natham N. Rajendranα, Mukundhu P. Narmadhaα, Ruckmani Arunachalam Ganesvaranb

αDepartment of Pharmacy Practice, Swamy Vivekananda College of Pharmacy, Tiruchengode 637205, Tamilnadu, India
bDepartment of Neurology, Shri Preethe Neuro Hospital, Palaniyappa Street, Erode 638009, Tamilnadu, India

A R T I C L E I N F O
Article history:
Received 8 July 2015
Accepted 19 November 2015
Available online 22 December 2015

Keywords:
Cognition
Epilepsy
MMSE
MOCA
APOE

A B S T R A C T

Background/Aim: Mini mental state examination (MMSE) is a widely accepted tool till date to investigate cognitive status; however, its sensitivity is questioned by few studies. Alternatively, Montreal cognitive assessment (MOCA) is considered more effective with high sensitivity to assess cognitive status than MMSE. The usefulness of MOCA is well established in assessing cognitive status in patients in various disorders. Apolipoprotein E (APOE) ε4 allele is identified as one of the risk factors associated with cognitive impairment on MMSE; however, the usefulness of MOCA on the association between APOE ε4 allele and cognitive impairment is not clearly established and hence the present study.

Methods: This prospective study recruited 123 subjects diagnosed as tonic-clonic seizures in the study site during the study period.

Results: Gender and educational status showed normal cognitive function on MMSE but showed cognitive impairment on MOCA. Among epilepsy patients, all APOE ε4 carriers showed mild to severe cognitive impairment on MOCA but differences in cognitive status were observed in this population as well as in APOE ε4 non-carriers on MMSE.

Conclusion: Thus, the present study demonstrates the sensitivity of MOCA over MMSE in detecting cognitive impairment in epilepsy.

© 2015 Indian Epilepsy Society. Published by Elsevier, a division of Reed Elsevier India, Pvt. Ltd. All rights reserved.

* Corresponding author. Tel.: +91 9865088756; fax: +91 04288 234417.
E-mail address: amirpalanisamy15@gmail.com (A. Palanisamy).
http://dx.doi.org/10.1016/j.ijep.2015.11.002
2213-6320/© 2015 Indian Epilepsy Society. Published by Elsevier, a division of Reed Elsevier India, Pvt. Ltd. All rights reserved.
1. Introduction

Dementia is a common adverse effect associated with phenytoin drug treatment in epilepsy population. It affects the quality of life of the individual besides taking treatment with AEDs and as such, its accurate diagnosis is of prime importance in epilepsy population. Currently dementia is assessed by using Mini Mental Status Examination (MMSE). MMSE is a brief mental status test measuring orientation, concentration, immediate and delayed memory, language, and constructional praxis. Scores range from 0 to 30, with five cognitive subtests and higher scores indicating better cognitive performance. Until 2001, there were no specific cognitive screening instruments to detect mild dementia. Although the MMSE is considered useful, it has low sensitivity to detect mild dementia, because most subjects score in the normal range on the test. So far, the assessment of cognitive function was solely based on the Mini-Mental Examination (MMSE), which has been shown to be insensitive at detecting dementia.

So, in cases in which there is suspicion of dementia or concern about the patient’s cognitive status and the MMSE score is in the normal range (24–30), test such as the Montreal cognitive assessment (MOCA) could be administered. MOCA is a 30-point scale with seven cognitive subtests including visuospatial/executive functions, which are not found in MMSE. This would help to demonstrate objective cognitive loss. MOCA is feasible and superior to the MMSE in screening for dementia in subacute stroke/transient ischemic attack patients, as it detects complex dementias such as executive function and visual perception/construction. MOCA is more sensitive to changes in types of dementia that particularly affect the frontal lobe because of its greater emphasis on tasks of frontal executive functioning, compared with the MMSE, and therefore MOCA is a useful additional screening for individuals in a memory clinic setting, who score over 25 points on the MMSE. In cryptogenic epilepsy patients, who reported normal cognition according to MMSE, MOCA performance showed dementia in these patients in spite of a normal MMSE score, thus suggests using MOCA as a screening test for patients with epilepsy.

Now there is increasing evidence that apolipoprotein E (APOE) genotyping will help to diagnose the Alzheimer’s disease (AD), and several studies report that APOE ε4 allele carriers are vulnerable to the AD. Studies also report that moderate to severe dementia results ultimately in AD, and moreover the possible role of APOE ε4 allele in dementia has been documented. Based on the above reports, in the present study, we compared MMSE and MOCA in assessing cognitive function in APOE ε4 allele carriers and in APOE ε4 allele non-carriers in epilepsy.

2. Methods

2.1. Study population

One hundred and twenty three epilepsy patients (≥18 years old) admitted to the Neurology Department at a private hospital in Erode, Tamilnadu, India were recruited during the period, November 2008 to September 2012. Ethical approval was granted by the Institutional Ethics Committee, Swamy Vivekanandha College of Pharmacy, Namakkal, Tamilnadu, India. The patient consent form was prepared in English and regional language (Tamil) as per the Indian Council of Medical Research (ICMR) guidelines, and the same was obtained before the start of the study. All the epilepsy population (>18 years old) diagnosed as tonic-clonic seizures administered with phenytoin monotherapy were eligible participants, and patients were excluded, if they were illiterate, having active psychiatric illness and/or neurological disorders according to their medical history.

2.2. Procedure

2.2.1. Demographics and clinical profile

Basic demographic information including age, gender, and level of education were collected.

2.2.2. Mini Mental State Exam (MMSE)

Folstein’s Mini Mental State Exam Form was used in this study. It includes

- Orientation: The object was asked the date, and then asked specifically for parts omitted.
- Registration: The names of 3 unrelated objects, clearly and slowly were said, about 1 s for each. The most commonly used objects were apple, table, and penny. After said all 3, subject was asked to repeat them.
- Attention and calculation: The subject was asked to begin with 100 and count backward by 7. Stop after 5 subtractions (93, 86, 79, 72, 65). The total number of correct answers was scored.
- Recall: The subject was asked to recall the 3 words that they were previously asked to remember.
- Language: It consists of Naming, Repetition, 3-stage command, Reading, Writing, and Copying.

2.2.3. Montreal Cognitive Assessment Scale

In addition to MMSE, MOCA scale was also used to assess different cognitive domains. Time to administer the MOCA is approximately 10 min. The total possible score is 30 points. It also consists of

- Alternating trail making: In this, subject was asked to draw a line going from a number to a letter in ascending order.
- Visuconstructional skills: The subject was asked to copy the diagram of cube and also draw a clock.
- Naming: The subject was asked to name the animal given. One point each was given for each correct answer.
- Memory: The examiner read a list of 5 words at a rate of one per second. The subject was asked to repeat the words later on.
- Attention: It consists of forward digit span, backward digit span, and vigilance.
- Sentence repetition: The examiner read out 2 sentences, and the subject was asked to repeat it.
- Verbal fluency: The subject was asked to tell as many words as he can think of that begin with a particular alphabet.
2.2.4. DNA extraction and APOE genotyping

0.5 ml of venous blood sample was drawn from study population, and genomic DNA was extracted from blood sample using protocol given in DNA extraction kit (Genei labs, Bangalore, India). APOE was amplified by polymerase chain reaction (PCR) in a DNA thermocycler (Genei Labs, Bangalore, India) using following oligonucleotide primers obtained from Sigma Labs, India and following primer used in the PCR E2mut (5’-ACT GAC CCC GGT GCC GGA GAC GCG TGC) and downstream primer E3 (5’-TGT TCC ACC AGG GCC CCC AGG CGC TCG CGG). After initial denaturation at 94 °C for 3 min, the samples were subjected to 40 cycles of denaturation at 94 °C for 30 s, annealing at 65 °C for 30 s and extension at 72 °C for 7 s. A final extension was performed at 72 °C for 7 s. Following PCR, aliquots (10 μl) of the reaction mixtures were analyzed by electrophoresis on a 1.5% agarose gel, containing ethidium bromide (0.2 mg/L) for 10 min and visualized under UV illumination.13

To evaluate the effect of APOE ε4 allele on dementia, study population was categorized into two groups: ε4 carriers (ε2/ε4, ε4/ε4 and ε3/ε4 allele) and ε4 non-carriers (ε2/ε2, ε2/ε3 and ε3/ε3 allele). Differences between the mean ± SD of two groups (case and control) were analyzed by the two-tailed unpaired Student’s t-test, and differences between median were analyzed by Mann–Whitney test. 95% confidence interval was used, and P < 0.05 was considered statistically significant. Graph pad in stat prism 4.0 software package was used in the statistical analysis.

2.2.5. Statistical analysis

Table 1 - Cognitive status in demographics of the study population (n = 123).

<table>
<thead>
<tr>
<th>Variables</th>
<th>MMSE</th>
<th>MOCA</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n = 93)</td>
<td>24.09 ± 3.90</td>
<td>21.33 ± 4.02</td>
<td><0.05</td>
</tr>
<tr>
<td>Female (n = 30)</td>
<td>24.65 ± 4.37</td>
<td>21.92 ± 4.58</td>
<td><0.05</td>
</tr>
<tr>
<td>Age distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early adulthood (19–30 years; n = 70)</td>
<td>23.26 ± 4.17</td>
<td>20.70 ± 4.33</td>
<td><0.05</td>
</tr>
<tr>
<td>Adulthood (31–50 years; n = 53)</td>
<td>23.92 ± 4.56</td>
<td>21.01 ± 4.68</td>
<td><0.05</td>
</tr>
<tr>
<td>Educational status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (0–5th standard; n = 28)</td>
<td>22.27 ± 3.88</td>
<td>19.68 ± 4.15</td>
<td><0.05</td>
</tr>
<tr>
<td>Secondary (6–12th standard; n = 42)</td>
<td>22.78 ± 4.57</td>
<td>19.70 ± 4.30</td>
<td><0.05</td>
</tr>
<tr>
<td>Graduates (>12th standard; n = 53)</td>
<td>25.05 ± 4.17</td>
<td>22.71 ± 4.36</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Numbers indicate mean ± SD.
Significant P values (<0.05) are in bold face.

3. Results

3.1. Cognitive status in demographics of the study population

Cognitive status between MMSE and MOCA was compared among the study population by using their demographics (Table 1). Irrespective of the gender distribution and age distribution, all the study population found to have mild to moderate dementia according to both MMSE and MOCA. However, Graduates found to have normal cognitive status according to MMSE and mild dementia according to MOCA. The difference was found to be significant (P < 0.05).

3.2. Association of cognitive status and APOE ε4 allele

An attempt was made to compare cognitive score using MMSE and MOCA in the total study population (n = 123) with the help of APOE allelic status. Among the study population 30.1% (n = 37) were detected as ε4 carriers and 69.9% (n = 86) were ε4 non-carriers (Table 2). APOE ε4 carriers were found to have moderate dementia on both MMSE and MOCA. A significant reduction (P < 0.05) in the cognitive status was observed on MOCA as compared to MMSE. Mean cognitive score of ε4 non-carriers was normal on MMSE, but mild dementia was observed in the same study population on MOCA.

3.3. Comparison of MMSE and MOCA on cognitive status of ε4 carriers and ε4 non-carriers

The prevalence rate of normal cognitive status, mild dementia, moderate dementia, and severe dementia among the ε4 carriers and ε4 non-carriers in both MMSE and MOCA was categorized according to their cognitive score (Table 3). MMSE showed no prevalence of severe dementia in both ε4 carriers and ε4 non-carriers. As per MOCA, 59.5% (n = 22) ε4 carriers and 19.8% (n = 17) ε4 non-carriers reported severe dementia (Alzheimer’s disease) and no ε4 carriers showed normal cognitive status. Conversely, on MOCA, only 22.1% (n = 19) ε4 non-carriers showed normal cognitive score, while majority of ε4 non-carriers were found to have poor cognitive status.
alleles. Differences have been related to the distribution of the APOE variant and the rarest is e3 and e4. The most common allele present in the general population is the e3 variant and the rarest is e2, although racial and ethnic differences have been related to the distribution of the alleles. Apolipoprotein E e4 allele in developing AD and/or affecting normal cognition. Apolipoprotein E e4 carriers have a tendency toward more severe dementia and are also vulnerable to earlier onset and more rapidly progressing AD. Therefore early detection of dementia by MOCA screening may help clinicians to intervene and improve prognosis in epilepsy.

According to MOCA, no subject among e4 carriers reported normal cognitive score, whereas mild to severe dementia was observed in the same population. On the contrary, 13.5% e4 carriers showed normal cognitive status, and no e4 carrier was found with severe dementia. The results from the present study indicate that both e4 carriers and e4 non-carriers were found to have significantly greater decline in cognitive score by MOCA screening, and moreover cognitive status in e4 carriers was poorer than that in e4 non-carriers on MOCA rather than MMSE. Our finding substantiates the results of the previous study about the sensitivity of the MOCA over MMSE. The findings of the present study propose that detection of dementia in epilepsy population particularly in APOE e4 non-carriers by the currently used MMSE screening is questionable and therefore recommends MOCA as a more reliable tool for the assessment of cognitive score in epilepsy.

Conflicts of interest

All authors have none to declare.

References

