Homeopathy 2015; 104(04): 305-310
DOI: 10.1016/j.homp.2015.06.005
Original Paper
Copyright © The Faculty of Homeopathy 2015

Experimental physical methods and theories – then and now

Jurgen Schulte
Further Information

Publication History

Received13 March 2015
revised17 April 2015

accepted15 June 2015

Publication Date:
28 December 2017 (online)

Introduction: A first evaluation of fundamental research into the physics and physiology of Ultra high dilutions (UHDs) was conducted by the author in 19941. In this paper we revisit methods and theories from back then and follow their paths through their evolution and contribution to new knowledge in UHD research since then.

Method: Physical methods and theories discusses in our anthology on UHD in 19941 form the basis for tracing ideas and findings along their path of further development and impact on new knowledge in UHD.

Results: Experimental approaches to probe physical changes in homeopathic preparations have become more sophisticated over past two decades, so did the desire to report results to a scientific standard that is on par with those in specialist literature. The same cannot be said about underlying supporting theoretical models and simulations.

Conclusion: Grant challenges in science often take a more targeted and more concerted approach to formulate a research question and then look for answers. A concerted effort to focus on one hypothesized physical aspect of a well-defined homeopathic preparation may help aligning experimental methods with theoretical models and, in doing so, help to gain a deeper understanding of the whole body of insights and data produced.

 
  • References

  • 1 Endler P.C., Schulte J. Ultra High Dilution—Physiology and Physics. Dordrecht: Kluwer.; 1994.
  • 2 Schulte J., Endler P.C. Outline of experimental physical methods to investigate specific structures of ultra high diluted solvents. In: Endler P.C., Schulte J. (eds). Ultra High Dilution—Physiology and Physics. 1994. Dordrecht: Kluwer; pp 99-104.
  • 3 Becker-Witt C., Weisshuhn T., Luedtke R., Willich S. Quality assessment of physical research in homeopathy. J Altern Complement Med 2003; 9 (01) 113-132.
  • 4 Bonet-Maury P., Deysine A., Vogeli L.-M. Recherche sur etude des dilutions homéopathiques par les radio-isotopes. Ann Pharmac Franc 1954; 12: 654-663.
  • 5 Boiron J., Cier A., Vingert C. Effets de quelques facteurs physiques sur l’activité pharmacologique de dilutions infinitésimales. Ann Hom Franc 1968; 10: 187-196.
  • 6 Buck U., Huisken F. Chem Rev 2000; 100: 3863.
  • 7 Buch V., Baurecker S., Devlin J.P., Buck U., Kazimirski J.K. Int Rev Phys Chem 2004; 23: 375.
  • 8 Pradzynski Christoph C, Forck Richard M, Zeuch Thomas, Petr Slavíček, Udo Buck, Science 337.
  • 9 Sukul N.C., Ghosh S., Sukul A., Sinhababu S.P. Variation in Fourier transform infrared spectra of some homeopathic potencies and their diluent media. J Alt Comp Med 2005; 11 (05) 807-812.
  • 10 Auerbach D. Mass, fluid and wave motion during the preparation of ultra high dilutions. In: Endler P.C., Schulte J. (eds). Ultra High Dilution—Physiology and Physics. 1994. Dordrecht: Kluwer; pp 129-135.
  • 11 Verma S., Gokhale R., Burgess D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 2009; 380 1–2 216-222 Liu G, Zhang D, Jiao Y, Zheng D, Liu.
  • 12 Chikramane P.S., Suresh A.K., Bellare J.R., Kane S.G. Extreme homeopathic dilutions retain starting materials: a nanoparticulate perspective. Homeopathy 2010; 99: 231-242.
  • 13 Ruan B., Jacobi M. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett 2012; 7 (01) 127.
  • 14 Jia L., Zhang Q., Lou H. Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology. Int J Pharm 2012; 422 1–2 516-522.
  • 15 Sedlak M., Dmytro Rak D. Large-scale inhomogeneities in solutions of low molar mass compounds and mixtures of liquids: supramolecular structures or nanobubbles?. J Phys Chem B 2013; 117: 2495-2504.
  • 16 Bell I.R., Sarter B., Standish L.J., Banerji P., Banerji P. Low doses of traditional nanophytomedicines for clinical treatment: manufacturing processes and nonlinear response patterns. J Nanosci Nanotechnol 2015; 15 (06) 4021-4038.
  • 17 Demangeat J.-L. NMR water proton relaxation in unheated and heated ultrahigh aqueous dilutions of histamine: evidence for an air-dependent supramolecular organization of water. J Mol Liq 2009; 144: 32-39.
  • 18 Anagnostatos G.S. Small water clusters (clathrates) in the homoeopathic preparation process. In: Endler P.C., Schulte J. (eds). Ultra High Dilution—Physiology and Physics. 1994. Dordrecht: Kluwer; pp 121-128.
  • 19 Schulte J. Conservation of structures in aqueous ultra high dilutions. In: Endler P.C., Schulte J. (eds). Ultra High Dilution—Physiology and Physics. 1994. Dordrecht: Kluwer; pp 105-115.
  • 20 Czerlinksi G., Ypma T. Domains of water molecules provide mechanisms of potentization in homeopathy. Water 2010; 2: 1-13.
  • 21 Bellavite P., Marzotto M., Olioso D., Moratti E., Conforti A. High-dilution effects revisited. 2. Pharmacodynamic mechanisms. Homeopathy 2014; 103: 22-43.
  • 22 Berezin G.S. Ultra high dilution effect and isotopic self-organization. In: Endler P.C., Schulte J. (eds). Ultra High Dilution—Physiology and Physics. 1994. Dordrecht: Kluwer; pp 121-128.
  • 23 Weingärtner O. NMR-Spektren von Sulfur-Potenzen. Therapeutikon 3: 438.
  • 24 Luu D.V. Etude des dilutions homeopathiques per spectrocopie Raman laser. Lab Boiron.; 1976.
  • 25 Rousset J.L., Duval E., Boukenter A. J Chem Phys 1990; 92: 2150-2154.
  • 26 Walrafen G.E. J Chem Phys 1964; 40: 3249-3256.
  • 27 Walrafen G.E. J Chem Phys 1967; 47: 114-126.
  • 28 Krishnamurthy S., Bansil R., Wiafe-Akenten J. J Chem Phys 1983; 79: 5863-5870.
  • 29 Mizoguchi K., Hori Y., Tominaga Y. J Chem Phys 1992; 97: 1961-1968.
  • 30 Miura N., Yamada H., Moon A. Intermolecular vibrational study in liquid water and ice by using far infrared spectroscopy with synchrotron radiation of MIRRORCLE 20. Spectrochim Acta Part A 2010; 77: 1048-1053.
  • 31 Young T.M. J Am Inst Hom 1975; 68: 8-16.
  • 32 Demangeat J.L., Demangeat C., Gries P., Pointevin B., Constantinesco N. Modifications des temps de relaxation RMN á 4 MHz des protons du solvent dans les trè s hautes dilutions salines des slice/lactose. J Med Nucl Biophy 1992; 16 (02) 135-145.
  • 33 Sukul A., Sarkar P., Sinhababu S.P., Sukul N.C. Altered solution structure of alcoholic medium of potentized Nux vomica underlies its antialcoholic effect. Br Homeopath J 2000; 89: 73-77.
  • 34 Sukul N.C., Ghosh S., Sinhababu S.P., Sukul A. Strychnos nux-vomica extract and its ultra-high dilution reduce voluntary ethanol intake in rats. J Altern Complement Med 2001; 7: 187-193.
  • 35 Aabel S., Fossheim S., Rise F. Nuclear magnetic resonance (NMR) studies of homeopathic solutions. Br Homeopath J 2001; 90: 14-20.
  • 36 Anick D.J. High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water. BMC Complement Altern Med 2004; 4: 15.
  • 37 Baumgartner S., Martin M., Skrabal P. et al. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate. Naturwissenschaften 2009; 96: 1079-1089.
  • 38 Demangeat J.L. Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years’ research using water proton NMR relaxation. Homeopathy 2013; 102: 87-105.
  • 39 Del Giudice E., Preparata G., Vitiello G. Water as a free electric dipole laser. Phys Rev Lett 1988; 61 (09) 1085-1088.
  • 40 Del Giudice E. Is the “memory of water” a physical impossibility?. In: Endler P.C., Schulte J. (eds). Ultra High Dilution—Physiology and Physics. 1994. Dordrecht: Kluwer; pp 117-120.
  • 41 Popp F.A. Some biophysical elements of homeopathy. In: Endler P.C., Schulte J. (eds). Ultra High Dilution—Physiology and Physics. 1994. Dordrecht: Kluwer; pp 177-186.
  • 42 Weingärtner O. The nature of the active ingredient in ultramolecular dilutions. Homeopathy 2007; 96: 220-226.