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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Traumatic brain injury (TBI) is a major cause of death and
disability in children and young adults and has been
identified as an important public health problem in the
United States and worldwide 1-6. When head injuries of all
severities are included, the age-related incidence has been
estimated to be as high as 670/100,0007. Over the past 15-
20 years the reported incidence of TBI resulting from motor
vehicle accidents has been declining steadily in the United
States; whereas brain injury resulting from firearms has
been on the rise, somewhat negating the benefits of better
public education and improved motor vehicle safety8.
Worldwide, motor vehicle accidents remain a major cause
of TBI, and this problem is actually increasing, particularly
in developing nations.  TBI remains a major cause of trauma-
related death and hospitalization. Approximately 2 million
persons suffer TBI in the United States annually and of
these about 70,000 to 90,000 will have permanent long-term
disability, creating a significant socioeconomic and
emotional burden on the families and society. The most
commonly affected group is males 15-24 years of age, but
children under the age of five and adults above the age of
65 also tend to be at increased risk6.  In the U.S., pediatric

TBI (under 14 years of age) is responsible for an estimated
3000 deaths, 29,000 hospitalizations and 400,000 emergency
department visits annually4.

The etiology of TBI varies with age. The elderly
experience an increased proportion of TBIs as a result of
falls. Motor vehicle accidents, and, to a lesser degree,
assaults, are predominant injury mechanism in adults and
adolescents. Adolescents may also experience a higher rate
of sports-related concussions. Preadolescent children are
also frequent victims of motor vehicle accidents, but more
often as a pedestrian or while riding a bicycle. Those under
the age of 5 years are more prone to falls4, while infants are
particularly vulnerable to repeated severe TBI in the form
of nonaccidental trauma (child abuse). Boys are more likely
than girls to sustain TBI, and this gender difference becomes
increasingly apparent in the older pediatric and young adult
population9,10.

Over the past 20 years, basic science studies have
provided significant insight into the underlying
pathophysiological changes associated with TBI, making
it distinct from other types of brain injury such as ischemia
and seizures11,12,13.  First and foremost, TBI causes neural
dysfunction and cell death as the result of a biomechanical
load being imparted to the brain.  This force results in
indiscriminate neurotransmitter release and ionic flux
shortly after the injury.  Subsequently, there are significant
alterations of cerebral metabolism and blood flow that result
in cellular dysfunction and vulnerability to secondary

Abstract: Traumatic brain injury induces a complex pathophysiological cascade of cellular events.
Central components of this response include increases in cerebral glucose uptake, reductions in cerebral
blood flow, indiscriminate excitatory neurotransmitter release, ionic disequilibrium, and intracellular calcium
accumulation.  Acute glutamate release and nonspecific neuronal depolarization induce threatening
perturbations in neuronal function.  Restoration of homeostasis requires significant increases in glucose
metabolism; however, there is often a concomitant reduction in cerebral blood flow, resulting in an
uncoupling of supply and demand.  Understanding the nature and timing of these processes provides the
practicing clinician with a mechanistic rationale for acute physiological monitoring, aggressive interventions
to address and minimize secondary injuries, implementation of advanced neuroimaging techniques, and
careful monitoring return to normal activity in head injured patients.
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injuries (such as hypoxia, hypotension, seizures or repeated
TBI).  Using advanced monitoring techniques in the neuro-
ICU, many of the pathophysiological changes originally
described in animal models have now been reported
following severe human TBI9-17.  Better understanding of
these underlying perturbations should result in improved
ICU care and lead they way for future clinical and
translational research to develop effective guidelines and
brain-specific therapy following TBI.

In this paper we will provide an overview of
neurometabolic changes that take place following TBI
(Figure 1). Furthermore, we will discuss the clinical relevance
of these basic pathophysiological mechanisms from the
standpoint of ICU management.

BIOMECHANICAL FACTORSBIOMECHANICAL FACTORSBIOMECHANICAL FACTORSBIOMECHANICAL FACTORSBIOMECHANICAL FACTORS
The biomechanics of traumatic brain injury involve both
linear and rotational forces. Linear forces result from straight
ahead acceleration-deceleration and can be associated with
coup injury (at the site of contact) and contra-coup injury
(distant, usually opposite the site of contact). While most
high-speed head injuries involve some linear component,
rotational forces will almost always also play a role. It is
these rotational forces that lead to twisting and shearing
injuries in the brain parenchyma, particularly in the white
matter fiber tracts (resulting in diffuse axonal injury).
Rotational forces of lower magnitude are also present in
milder forms of TBI such as sports-related concussion.

Biomechanical forces in the pediatric population can be
distinct from those in the adults. Some of these differences
result from the relatively large head size, reduced muscular
strength, and increased flexibility in the neck, which may
allow larger forces to be transmitted to the brain. On the
other hand, there is there is less CSF space around the
younger brain, and the prominent bony ridges of the anterior
and middle cranial fossae are less developed. These factors
may contribute to the lower occurrence of focal lesions in
pediatric TBI18-21. The developing skull is thinner as
compared to an adult skull and therefore, more vulnerable
to diffuse deformation22.  The open fontanelles and the
flexibility of the sutures may help dampen the traumatic
forces; where the adult skull is lacking this luxury. The
open fontanelles and sutures also help accommodate slower
growing space-occupying lesions (such as chronic
subdurals). On the other hand, the lower water content of
the adult brain renders it more compliant23-24. Clearly, the
biomechanics of the injury should be carefully considered
in the evaluation of any TBI patient, and the etiology of
trauma as well as the patient’s age are important factors in
the understanding these forces.

PATHOPHYSIOLOGYPATHOPHYSIOLOGYPATHOPHYSIOLOGYPATHOPHYSIOLOGYPATHOPHYSIOLOGY
GLUCOSE METABOLISMGLUCOSE METABOLISMGLUCOSE METABOLISMGLUCOSE METABOLISMGLUCOSE METABOLISM

Experimental models have shown that TBI results in a
significant increase of glucose utilization within the first 30
minutes post-injury, after which glucose uptake diminishes
and then remains low for about 5-10 days 25,13. Clinical
studies in humans using Positron Emission Tomography
(PET) have demonstrated comparable results.  Although it
is difficult to capture the acute period of hyperglycolysis
in a critically ill TBI patient, globally decreased glucose
metabolism has been demonstrated persisting chronically
for weeks to months post-injury in human patients15. In the
subacute phase, another study showed no correlation
between the level of consciousness as measured by
Glasgow Coma Scale (GCS) and glucose metabolism26.
Diminished cerebral glucose metabolism was seen in both
comatose (severe) and relatively intact (mild) TBI patients,
implying marked global neurometabolic abnormalities may
be present with or without significant clinical symptoms26.
Importantly, a follow-up study revealed that reduced
glucose uptake in subcortical structures (including
brainstem) did correlate with the presence of coma,
suggesting that regional differences in physiology are
relevant to clinical exam measures27.

The initial hyperglycolysis described above results from
disruption of ionic gradients across the neuronal cell
membrane, activating energy-dependent ionic pumps28-32.
In experimental animal models the increase in glucose
utilization is almost instantaneous following injury and lasts
up to 30 minutes in the ipsilateral cortex and
hippocampus25,33. In more severe types of injury such as
cortical contusion, the rise in glucose metabolism may last
up to 4 hours in the outlying areas of the contused
segment34. As cerebral oxidative metabolism at baseline is
already near or at maximum levels, this increased energy
demand may be dealt with by augmenting glycolysis35,36

which in turn increases lactate production37.  Increased
lactate levels are seen after both ischemic and concussive
brain injuries38-44.  However, the mechanism of lactate
accumulation has traditionally been ascribed to reduced
oxidative metabolism after ischemia, while, at least acutely
after trauma, increased glycolysis may play a more
prominent role.  More recently, a mechanism of alternative
metabolic substrate production has been proposed,
whereby lactate originates from astrocytes and is shuttled
to the neuron to facilitate energy production at a time of
need 45-47.  This idea has received further support from
experimental TBI studies utilizing ketone bodies as an
alternative substrate48 and clinical studies that show
increased brain uptake of lactate following TBI49.
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 In addition to the glycolytic disturbances mentioned
above, there is also increasing evidence for impairment of
oxidative metabolism following brain trauma50-53.  This may
lead to depletion of high-energy phosphates (adenosine
triphosphate, ATP)54-56, with a subsequent rise in anaerobic
metabolism, and yet further accumulation of lactate41, 57-59.
Increased lactate may generate neuronal dysfunction as a
result of acidosis, membrane damage, disruption of the
blood brain barrier and cerebral edema60-63. There is also
some evidence suggesting lactate accumulation post-injury
may render the neurons more susceptible to secondary
ischemic insults64.

Severely head injured patients frequently show cerebral
lactic acidosis65, 66. Post-injury cerebral lactate production
is marked by an acute and extended increase in
cerebrospinal fluid, and a negative arteriovenous difference
in lactate content (higher jugular venous than arterial
concentration)65-67. Several investigators41, 68 have shown
a rise in lactate concentration in cerebrospinal fluid and in
brain tissue within the initial 60 minutes following mild to
moderate fluid percussion injury in rat models. Nilsson, et
al., using a weight drop model of injury, showed a 4-to 5
fold increase in the dialysate concentration of lactate for
about 80 minutes post injury; they also demonstrated a
significantly higher elevation of lactate (7 fold) as injury
severity increased69, 70. The rise in extracellular lactate is
partially presumed to be as a result of decreased cerebral
blood flow in the face of increased energy demand from
injury- induced ionic changes.  However, as mentioned
earlier, recent studies have suggested that the lactate story
is not all bad.  Lactate appears to serve as an alternative
oxidative fuel in states of physiological stress or
activation45-47.  Furthermore, at least in patients with
relatively preserved oxidative metabolism, brain uptake of
lactate has been associated with improved outcome49.

CEREBRAL BLOOD FLOW (CBF)CEREBRAL BLOOD FLOW (CBF)CEREBRAL BLOOD FLOW (CBF)CEREBRAL BLOOD FLOW (CBF)CEREBRAL BLOOD FLOW (CBF)
Cerebral hemodynamics change significantly post injury,
and the pattern of these changes depends upon the type
of injury and its severity71, 72. Dietrich, in experimental animal
models using mild to moderate TBI, showed a significant
drop off in blood flow (70-80% of normal)73 , and with more
severe injury the drop off neared ischemic levels71.
Currently, there is an ongoing debate as to whether these
low flow events are a contributing cause of cell injury, a
consequence of the injured and dying tissue74,75, or a
manifestation of a non-ischemic physiological perturbation.
While studies after TBI have shown histopathological or
neuroimaging changes compatible with hypoxia/
ischemia72,76 as well as marked acute reductions in CBF74,76,77,
the presence of true ischemia following clinical TBI has

been difficult to demonstrate.   Diringer, et al., in clinical
studies, has shown flow reduction to levels classically
defined as “ischemic” following hyperventilation in
severely head-injured patients; however, these flow
reductions were not associated with a concomitant decrease
of the cerebral metabolic rate for oxygen (CMRO2) beyond
that induced by TBI itself75.  Using a voxel-based method
to identify a noncontiguous, physiological region of
interest, Coles, et al., reported an ischemic brain volume of
approximately 6%78.  In a different set of patients, Vespa, et
al., reported an ischemic brain volume of only about 1.5%.
They did find, however, that metabolic crisis, as defined by
a lactate/pyruvate ratio (LPR) of >40, was present in 7/19
patients and this parameter (LPR) correlated negatively with
CMRO2, leading them to conclude that a “metabolic crisis
without ischemia” was present after TBI79.

In the pediatric population, increased blood flow
(hyperemia) was once felt to be a common complication of
TBI, resulting in increased intracranial pressure and cerebral
edema.  Current studies point out that post-injury
hyperemia is not as common as once thought80. Earlier
studies of cerebral blood flow were done comparing brain-
injured children to normal young adult values. It is now
known that CBF undergoes significant changes through
development and is significantly higher in children than
adults81-83.  The newer studies, by comparing to age-
appropriate controls, have not shown marked
hyperemia84,85.

Kelly in 1996 and Vavilala in 2004 showed an association
between outcome and cerebral blood flow that is dependent
on the autoregulation. Intact autoregulation in the face of
hyperemia is linked to better perfusion and subsequently a
better outcome86, 87, while hyperemia in a setting of impaired
autoregulation is generally associated with intractable
increases in intracranial pressure and ultimately, poorer
cerebral perfusion and worse outcome. Thus, it appears
that it is not only the magnitude of cerebral blood flow, but
also the reactivity of the cerebral vasculature that
determines tissue viability and prognosis.

IONIC FLUX AND GLUTAMATEIONIC FLUX AND GLUTAMATEIONIC FLUX AND GLUTAMATEIONIC FLUX AND GLUTAMATEIONIC FLUX AND GLUTAMATE
Acute injury to the brain causes a rapid release of
glutamate88, 89, the predominant excitatory neurotransmitter
in the central nervous system. This indiscriminate release
occurs as a result of extensive triggering of action
potentials, synaptic neurotransmitter release, and membrane
disruption. This massive release of glutamate is a major
source of potassium efflux into the extracellular space70, 89.
The rise in the extracellular concentration of potassium
also results from nonspecific breakdown of the plasma
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membrane, especially in areas of the brain damaged by
localized contusion90, 91 or intracerebral hemorrhages92.

It is well known that experimental TBI triggers a rise in
the extracellular potassium concentration89, 90.  Both the
fluid percussion and weight drop models of experimental
brain injury transmit a substantial force to wide areas of
the brain, resulting in diffuse dysfunction. This rise in the
extracellular concentration of potassium occurs as the result
of opening voltage-gated potassium channels by neuronal
depolarization. Julian and Goldman demonstrated that
deformation of neural tissue alone could produce enough
depolarization to lead to neuronal firing93. Importantly, glial
cells play a prominent role in the re-uptake of extracellular
potassium94-96 and are able maintain the concentration below
the physiological ceiling in mildly abnormal states such as
brief seizures or mild concussion89, 97, 98.  Nonetheless, some
have shown that more severe concussive injury causes
increases in extracellular potassium concentration up to 70
percent of the maximum level reached in ischemia (80 mM)99-

101. This significantly exceeds the physiological ceiling of
6-10 mM67, 97, 98, 102 , and indicates that the normal glial uptake
mechanisms have either been overwhelmed or somehow
impaired94, 103. This increase in extracellular potassium, in
turn, may lead to increased energy demand, causing greater
rates of glycolysis with a parallel rise and accumulation of

lactate.

Glutamate also induces opening of ligand-gated
channels that are permeable to calcium. A number of studies
have shown an increase in intracellular calcium
concentration following various experimental traumatic
brain injury models52, 104-107 . Fineman and colleagues have
described a significant calcium accumulation for up to four
days post fluid percussion injury in the ipsilateral cortex,
hippocampus, striatum, and thalamus of the injured adult
rat104, 107. Accumulation of calcium intracellularly has been
an indicator for impending cell death. There are multiple
means by which calcium exerts its apoptotic properties108,

109. For example, increased intracellular calcium can cause
overstimulation of phospholipases110 , plasmalogenase,
caplains111, 112 protein kinases108 , guanylate cyclase113, nitric
oxide synthetase, calcineurins, and endonucleases.  As a
result of these cellular changes there is overproduction of
toxic reaction products, such as free radicals114, 115,
significant disruption of the cytoskeletal organization116,

117, and activation of apoptotic genetic signals118.
Accumulation of intracellular calcium does not always result
in cell death, but affects the metabolic machinery of the
mitochondria to such an extent that any secondary
metabolic demand cannot be met, subsequently rendering
the cell vulnerable to energy failure119. This becomes a
significant issue in TBI patients, as in their initial phase of
the injury they fight an uphill battle against secondary
insults such as increased body temperature, seizures,
hypotension and hypoxia. The need for meticulous
monitoring to prevent or at least minimize the occurrence
and/or repetition of the secondary injuries is clear.

Magnesium is one of the electrolytes that play a
significant role in maintaining ionic balance within the
injured cell. Several studies in experimental models of
traumatic brain injury have shown a marked decrease in
brain intracellular free and total magnesium concentration
that lasts up to 4 days post injury120-122. Vink and colleagues
have shown in animal models that the decrease in free
intracellular magnesium correlates with severity of injury122.
Memon and colleagues demonstrated this finding in
humans, where they showed a graded decrease in serum
magnesium, correlating with severity of injury based on
the CT scan and other diagnostic parameters123.

Magnesium plays a pivotal role in maintaining the
integrity of the mitochondrial inner membrane124 and the
functional reliability of the ATPase pump125.  Additionally,
magnesium has a significant role in influencing the degree
of excitotoxic damage as a result of TBI, as intra- and
extracellular magnesium concentration affects the opening
and closing of sodium and calcium ion channels, as well as

Fig 1: Neurometabolic cascade following traumatic injury.
CELLULAR EVENTS  1) Nonspecific depolarization and initiation
of action potentials. 2) Release of excitatory neurotransmitters
(EAAs).  3) Massive efflux of potassium.  4) Increased activity of
membrane ionic pumps to restore homeostasis. 5) Hyperglycolysis
to generate more ATP.  6) Lactate accumulation.7) Calcium influx
and sequestration in mitochondria leading to impaired oxidative
metabolism.  8) Decreased energy (ATP) production.  9) Calpain
activation and initiation of apoptosis (modified from Giza and
Hovda134).
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their ionic transporters126. There is significant evidence
pointing to a marked correlation between decreased
magnesium levels and the outcome of TBI, such as cerebral
edema, behavioral abnormalities, and impaired cognitive
performance127-129.

Thus, ionic flux represents a fundamental cellular change
induced by biomechanical injury.  Direct potassium efflux
and indiscriminate release of glutamate with subsequent
neuronal depolarization may serve as the triggers for
subsequent metabolic perturbation.  Cellular metabolism
and functional outcome also appear to be impaired by
concomitant reductions in intracellular magnesium.

SUMMARYSUMMARYSUMMARYSUMMARYSUMMARY
Multiple physiological processes characterize the
neurometabolic cascade of TBI.  These include alterations
in glucose metabolism, changes in blood flow and
neurovascular coupling, release of excitatory
neurotransmitters, efflux of potassium and accumulation
of intracellular calcium.  Attempts to restore ionic
equilibrium require activation of energy-dependent
membrane pumps.  Increases in energy demand post-TBI
may occur at a time of diminished cerebral blood flow and
thus, a time of limited substrate availability.  Using
advanced monitoring and imaging techniques, many of the
physiological processes originally described in
experimental animals can now be detected and even
followed in head-injured patients.  These investigations
have led to a more nuanced understanding of cerebral
metabolism after brain injury.  Conditions once felt to be
associated with bad outcome (such as increased cerebral
lactate and reduced cerebral blood flow) are not black-or-
white indicators of cerebral distress.  Increasingly, it
appears that it is the relationship between these parameters
that is more important in determining treatment response
or outcome than the physiological values in isolation.  Thus,
being able to reliably monitor cerebral physiological
changes in the intensive care setting is only the first step;
understanding the complexity of post-injury
pathophysiology is also critical for optimal management of
head-injured patients.
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