Vet Comp Orthop Traumatol 2010; 23(06): 393-399
DOI: 10.3415/VCOT-10-02-0022
Review Article
Schattauer GmbH

Demineralised bone matrix in veterinary orthopaedics: A review

J. F. Innes
1   Musculoskeletal Research Group and Small Animal Teaching Hospital, Department of Comparative Molecular Medicine, School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Neston, Cheshire, UK
,
P. Myint
2   Veterinary Tissue Bank Ltd., Unit 3, The Long Barn, Brynkinalt Business Centre, Chirk, Wrexham, UK
› Author Affiliations
Further Information

Publication History

Received: 09 February 2010

Accepted: 23 April 2010

Publication Date:
19 December 2017 (online)

Summary

Demineralised bone matrix (DBM) is commonly used in human orthopaedics as an allograft prepared from cortical bone. As such, there is a background of literature on the basic science, experimental animal studies and clinical human use of DBM. Because canine DBM is now increasingly available and used in veterinary orthopaedics, this review aims to update the veterinary orthopaedic specialist with the properties and activities of this bone allograft product.

 
  • References

  • 1 Nade S. The replacement of broken, missing, and diseased bone. In: Sumner-Smith G, editor. Bone in Clinical Orthopedics. 2nd ed. Dubendorf: AO Publishing; 2002: 379-409.
  • 2 Reddi AH. Cell biology and biochemistry of endochondral bone development. Coll Rel Res 1981; 01: 209-226.
  • 3 Reddi AH, Anderson WA. Collagenous bone matrix-induced endochondral ossification and hematopoiesis. J Cell Biol 1976; 69: 557-572.
  • 4 Urist MR. Bone – formation by autoinduction. Science 1965; 150: 893-899.
  • 5 Ripamonti U. Soluble osteogenic molecular signals and the induction of bone formation. Biomaterials 2006; 27: 807-822.
  • 6 Wang EA, Rosen V, Cordes P. et al. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 1988; 85: 9484-9488.
  • 7 Wozney JM, Rosen V, Celeste AJ. et al. Novel regulators of bone-formation – molecular clones and activities. Science 1988; 242: 1528-1534.
  • 8 Sampath TK, Reddi AH. Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular-matrix. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 1983; 80: 6591-6595.
  • 9 Sampath TK, Reddi AH. Dissociative extraction and reconstitution of extracellular-matrix components involved in local bone differentiation. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 1981; 78: 7599-7603.
  • 10 Ripamonti U. Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues. J Cell Mol Med 2004; 08: 169-180.
  • 11 Groeneveld EHJ, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 2000; 142: 9-21.
  • 12 Cheng HW, Jiang W, Phillips FM. et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (bmps). J Bone Joint Surg Am 2003; 85A: 1544-1552.
  • 13 Centrella M, McCarthy TL, Canalis E. Skeletal tissue and transforming growth factor-beta. Faseb Journal 1988; 2: 3066-3073.
  • 14 Joyce ME, Jingushi S, Bolander ME. Transforming growth factor-beta in the regulation of fracture repair. Orthop Clin North Am 1990; 21: 199-204.
  • 15 Joyce ME, Roberts AB, Sporn MB. et al. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 1990; 110: 2195-2207.
  • 16 Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today 2003; 08: 980-989.
  • 17 Bostrom MPG, Asnis P. Transforming growth factor beta in fracture repair. Clin Orth Rel Res 1998; S124: S131.
  • 18 Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: Which are the important molecules?. Injury 2007; 38: S11-S25.
  • 19 Katz JM, Nataraj C, Jaw R. et al. Demineralized bone matrix as on osteoinductive biomaterial and in vitro predictors of its biological potential. J Biomed Mater Res B Appl Biomater 2009; 89B: 127-134.
  • 20 Pietrzak WS, Woodell-May J, McDonald N. Assay of bone morphogenetic protein-2,-4, and-7 in human demineralized bone matrix. J Craniofac Surg 2006; 17: 84-90
  • 21 Zhang M, Powers RM, Wolfinbarger L. A quantitative assessment of osteoinductivity of human demineralized bone matrix. J Periodontol 1997; 68: 1076-1084.
  • 22 Edwards JT, Diegmann MH, Prendergast JM. et al Characterization of an athymic rat model to study osteoinductivity of human DBM. J Bone Miner Res 1997; 12: T401 T
  • 23 Edwards JT, Diegmann MH, Scarborough NL. Osteoinduction of human demineralized bone: Characterization in a rat model. Clin Orth Rel Res 1998; 219-28
  • 24 Reddi AH. Cartilage morphogenesis: Role of bone and cartilage morphogenetic proteins homeobox genes and extracellular matrix. Matrix Biol 1995; 14: 599-606
  • 25 Traianedes K, Russell JL, Edwards JT. et al Donor age and gender effects on osteoinductivity of demineralized bone matrix. J Biomed Mater Res B Appl Biomater 2004; 70 B 21-29.
  • 26 Zhang M, Powers RM, Wolfinbarger L. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol 1997; 68: 1085-1092.
  • 27 Han B, Tang BW, Nimni ME. Quantitative and sensitive in vitro assay for osteoinductive activity of dernineralized bone matrix. J Orthop Res 2003; 21: 648-654
  • 28 Peel SAF, Hu ZM, Clokie CML. In search of the ideal bone morphogenetic protein delivery system: In vitro studies on demineralized bone matrix, purified, and recombinant bone morphogenetic protein. J Craniofac Surg 2003; 14: 284-291
  • 29 Murray SS, Brochmann EJ, Harker JO. et al A statistical model to allow the phasing out of the animal testing of demineralised bone matrix products. Altern Lab Anim 2007 35. 405-409
  • 30 U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for industry: Eligibility determination for donors of human cells, tissues, and cellular and tissue-based products [document on the internet]. U.S. Food and Drug Administration; August, 2007 [Accessed January, 2010]. Available from. http://www.fda.gov/ downloads/BiologicsBloodVaccines/Guidance-ComplianceRegulatoryInformation/Guidances/ Tissue/ucm091345.pdf.
  • 31 Schultz RD. Duration of immunity for canine and feline vaccines: A review. Vet Microbiol 2006; 117: 75-79
  • 32 Syftestad G, Urist MR. Degradation of bone-matrix morphogenetic activity by pulverization. Clin Orth Rel Res 1979; 281-286
  • 33 Fucini SE, Quintero G, Gher ME. et al Small versus large particles of demineralized freeze-dried bone allografts in human intrabony periodontal defects. J Periodontol 1993; 64: 844-847
  • 34 Vail TB, Trotter GW, Powers BE. Equine demineralized bone-matrix – relationship between particlesize and osteoinduction. Vet Surg 1994; 23: 386-395
  • 35 Jergesen HE, Chua J, Kao RT. et al Age effects on bone induction by demineralized bone powder. Clin Orth Rel Res 1991; 253-259
  • 36 Turonis JW, McPherson JC, Cuenin MF. et al The effect of residual calcium in decalcified freeze-dried bone allograft in a critical-sized defect in the rattus norvegicus calvarium. J Oral Implantol 2006; 32: 55-62
  • 37 Hosny M, Arcidi C, Sharawy M. Effects of preservation on the osteoinductive capacity of demineralized bone powder allografts. J Oral Maxillofac Surg 1987; 45: 1051-1054.
  • 38 Aspenberg P, Johnsson E, Thorngren KG. Dose-dependent reduction of bone inductive properties by ethylene-oxide. J Bone Joint Surg Br 1990; 72: 1036-1037.
  • 39 Yazdi M, Bernick S, Paule WJ. et al Postmortem degradation of demineralized bone-matrix osteoinductive potential – effect of time and storage-temperature. Clin Orth Rel Res 1991; 281-285
  • 40 Lee KJH, Roper JG, Wang JC. Demineralized bone matrix and spinal arthrodesis. Spine J 2005; 5: 217S-223S.
  • 41 Frenkel SR, Moskovich R, Spivak J. et al Demineralized bone-matrix – enhancement of spinal-fusion. Spine 1993; 18: 1634-1639.
  • 42 Helm GA, Sheehan JM, Sheehan JP. et al Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg 1997; 86: 93-100
  • 43 Turner TM, Urban RM, Hall DJ. et al Osseous healing using injectable calcium sulfate-based putty for the delivery of demineralized bone matrix and cancellous bone chips. Orthopedics 2003; 26: S571-S5
  • 44 Kim SG, Kim WK, Park JC. et al A comparative study of osseointegration of avana implants in a demineralized freeze-dried bone alone or with platelet-rich plasma. J Oral Maxillofac Surg 2002; 60: 1018-1025.
  • 45 Hallfeldt KKJ, Kessler S, Puhlmann M. et al Effects of various sterilization techniques on the osteogenic properties of demineralized bone-matrix. Unfallchirurg 1992; 95: 313-318
  • 46 Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. In: 13th Annual Meeting of the Joint Section of the American-Association-of-Neurological-Surgeons, Congress-of-Neurological-Surgeons. Newport Beach, California: 1997. Feb 19–22 159-167.
  • 47 Martin GJ, Boden SD, Titus L. et al New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 1999; 24: 637-45.
  • 48 Rizzo D, Del Carlo RJ, Silva ASA. et al Homologous demineralized bone matrix associated to auto-logous bone marrow in a rabbit dorsolateral lumbar vertebral fusion. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia 2005; 57: 163-170
  • 49 Yee AJM, Bae HW, Friess D. et al Augmentation of rabbit posterolateral spondylodesis using a novel demineralized bone matrix-hyaluronan putty. Spine 2003; 28: 2435-2440.
  • 50 Lindholm TS, Nilsson OS, Lindholm TC. Extraskeletal and intraskeletal new bone-formation induced by demineralized bone-matrix combined with bone-marrow cells. Clin Orth Rel Res 1982; 251-255
  • 51 Qiu QQ, Shih MS, Stock K. et al Evaluation of dbm/ am composite as a graft substitute for posterolateral lumbar fusion. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2007; 82B: 239-245.
  • 52 Li NY, Yuan RT, Chen T. et al Effect of platelet-rich plasma and latissimus dorsi muscle flap on osteo-genesis and vascularization of tissue-engineered bone in dogs. J Oral Maxillofac Surg 2009; 67: 1850-1858.
  • 53 Sassard WR, Eidman DK, Gray PM. et al Augmenting local bone with grafton demineralized bone matrix for posterolateral lumbar spine fusion: Avoiding second site autologous bone harvest. Orthopedics 2000; 23: 1059-1064.
  • 54 Hierholzer C, Sama D, Toro JB. et al Plate fixation of ununited humeral shaft fractures: Effect of type of bone graft on healing. J Bone Joint Surg Am 2006; 88 A 1442-1447.
  • 55 Cammisa FP, Lowery G, Garfin SR. et al Two-year fusion rate equivalency between grafton DBM gel and autograft in posterolateral spine fusion. Spine 2004; 29: 660-666
  • 56 Miyazaki M, Tsumura H, Wang JC. et al An update on bone substitutes for spinal fusion. Eur Spine J 2009; 18: 783-799
  • 57 Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002; 84 A 454-464.
  • 58 Tiedeman JJ, Garvin KL, Kile TA. et al The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 1995; 18: 1153-1158.
  • 59 Upton J, Glowacki J. Hand reconstruction with allo-graft demineralized bone – 26 implants in 12 patients. J Hand Surg Am 1992; 17 A 704-713.
  • 60 Whiteman D, Gropper PT, Wirtz P. et al Demineralized bone powder – clinical applications for bone defects of the hand. J Hand Surg Br 1993; 18 B 487-490.
  • 61 Hoffer MJ, Griffon DJ, Schaeffer DJ. et al Clinical applications of demineralized bone matrix: A retrospective and case-matched study of seventy-five dogs. Vet Surg 2008; 37: 639-647