Nuklearmedizin 2008; 47(02): 80-85
DOI: 10.3413/nukmed-0128
Originalarbeiten
Schattauer GmbH

Uptake of 18F-FLT and 18F-FDG in primary head and neck cancer correlates with survival

18F-FLT- und 18F-FDG- Uptake korrellieren mit dem Überleben bei Kopf-Hals-Tumoren
A. Linecker
1   Departments of Craniomaxillofacial Surgery
,
C. Kermer
1   Departments of Craniomaxillofacial Surgery
,
I. Sulzbacher
3   Departments of Pathology
,
P. Angelberger
4   University of Vienna, ARC Seibersdorf Research GmbH, Seibersdorf
,
K. Kletter
2   Departments of Nuclear Medicine
,
R. Dudczak
2   Departments of Nuclear Medicine
,
R. Ewers
1   Departments of Craniomaxillofacial Surgery
,
A. Becherer
2   Departments of Nuclear Medicine
5   Department of Department of Nuclear Medicine, LKH Feldkirch, Austria
› Author Affiliations
Further Information

Publication History

Received: 07 February 2007

accepted in revised form: 17 July 2007

Publication Date:
02 January 2018 (online)

Summary

The aim of the study was to determine the practicability of 18F-FLT in tumours of the head and neck area in terms of visualization, a possible correlation between FLT uptake and proliferation fraction as determined by Ki-67 immunostaining, and if tumoural FLT-uptake has a prognostic meaning, as determined by a correlation to patient survival time. Results were compared to 18F-FDG. Patients, methods: 20 patients with previously untreated lesions of the head and neck area, which were clinically highly suspicious to be malignant, underwent PET scans with 18F-FLT and 18F-FDG, a CT of the head and neck area, and a biopsy. Tumour tracer uptake was determined by standardized uptake value (SUV) normalized to body weight and /non-tumor ratios (T/N). 18F-FDG and 18F-FLT uptake were compared with histopathologic and immunohistochemical results. Results: 19 patients had malignant tumours; one patient had a benign cystadenoma (so called Warthin's tumour) of the parotid gland. One negative lesion turned out to be a malignant T1 stage squamous cell carcinoma in both PET scans, the Warthin's tumour was false positive with 18F-FDG but showed only faint uptake with 18F-FLT, resulting in a sensitivity of 95 % for both tracers. Of all lesions, maximum SUVs of 18F-FLT ranged from 1.53 to 11.70 (mean ± SD 5.81 ± 2.28) those of FDG from 2.63 to 16.50 (mean ± SD 8.91 ± 3.58), p < 0.001. 18F-FLT-T/N ranged from 0.94 to 5.85 (mean ± SD, 3.18 ± 1.21), 18F-FDG-T/N was from 0.92 to 7.50 (mean ± SD, 3.6 ± 1.74), n.s. The mean survival time was 18 months in a maximum follow up time of 36 months. A significant correlation between both PET tracers and survival was detected, but no correlation between the amount of Ki-67 positive cells and FLT. Conclusion: In head and neck cancer in the primary setting 18F-FLT does not provide additional visual information in comparison to 18F-FDG.18F-FLT uptake is inversely correlated with patient survival, as well as 18F-FDG.

Zusammenfassung

Ziel dieser Arbeit war die Frage zu klären, ob bei Kopf-Hals-Tumoren der Einsatz von 18F-FLT gegenüber 18F-FDG eine signifikante Mehrinformation liefert. Zusätzlich sollte gezeigt werden, ob mögliche Korrelationen zwischen der tumoralen FLT-Aufnahme, der Ki-67-Wachstumsfraktion oder der Überlebenszeit bestehen. Patienten, Methoden: 20 Patienten mit unbehandelten Läsionen des Kopf-Hals-Bereiches, welche klinisch hochsuspekt als maligner Tumor imponierten, wurden mit 18F-FLT und 18F-FDG untersucht. Die tumorale Traceraufnahme wurde bestimmt mittels Körpergewicht-normiertem SUV (standardized uptake value) und in Relation zur kontralateralen Region gesetzt (Tumor/ Nichttumor-Ratio, T/N). Innerhalb der ersten zwei Wochen nach dem ersten Ambulanzbesuch wurden beide PET-Untersuchungen, ein CT des Gesichtsschädels sowie eine Biopsie durchgeführt. Die Ergebnisse der18F-FDG und 18F-FLT PET-Untersuchung wurden mit histopathologischen und immunhistochemischen Ergebnissen verglichen. Ergebnisse: 19 Patienten hatten einen malignen Tumor, ein Patient hatte ein Zystadenolymphom der Parotis (Warthin-Tumor). Eine negative Läsion war in beiden PET-Untersuchungen ein malignes Plattenepithelkarzinom T1-stadium, der Warthin-Tumor war falsch positiv in der 18F-FDGUntersuchung, hatte aber nur eine minimale Speicherung mit 18F-FLT-PET gezeigt. Daraus resultierte eine Sensitivität von 95% für beide Tracer. Die maximalen SUVs von 18F-FLT reichten von 1,53 bis 11,70 (MW ± SD 5,81 ± 2,28), die von FDG 2,63 bis 16,50 (MW ± SD 8,91 ± 3,58), p < 0,001. 18F-FLT-T/N reichte von 0,94 bis 5,85 (MW ± SD, 3,18 ± 1,21), 18F-FDG-T/N reichte von 0,92 bis 7,50 (mean ± SD 3,6 ± 1.74), n.s. Die mittlere Überlebenszeit betrug 18 Monate bei einem Beobachtungszeitraum von maximal 36 Monaten. Eine signifikante Korrelation zwischen beiden Tracern und der Überlebenszeit wurde festgestellt, aber keine Korrelation zwischen der Anzahl der Ki-67-positiven Zellen und FLT. Schlussfolgerung: Bei Kopf-Hals-Tumoren lieferte18F-FLT keine zusätzliche Information im Vergleich zu 18F-FDG. Die SUVs beider Tracer zeigten eine schwache, aber signifikante inverse Korrelation mit der Überlebenszeit.

 
  • References

  • 1 Allal AS, Slosman DO, Kebdani T. et al. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]flu- oro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 2004; 59: 1295-1300.
  • 2 Blocher A, Bieg C, Ehrlichmann W. et al. Procedure for routine synthesis of 18FLT in high activities. J Nucl Med 2001; 42 (Suppl) 257P.
  • 3 Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology. Lancet Oncol 2: 157-164.
  • 4 Brun E, Kjellen E, Tennvall J. et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002; 24: 127-135.
  • 5 Buck AK, Schirrmeister H, Hetzel M. et al. 3-deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002; 62: 3331-3334.
  • 6 Chen W, Cloughesy T, Kamdar N. et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005; 46: 945-952.
  • 7 Cobben DC, van der Laan BF, Maas B. et al. 18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 2004; 45: 226-231.
  • 8 Cobben DC, Elsinga PH, Suurmeijer AJ. et al. Detection and grading of soft tissue sarcomas of the extremities with 18F-3'-fluoro-3'-deoxy-L-thy- midine. Clin Cancer Res 2004; 10: 1685-1690.
  • 9 Francis DL, Freeman A, Visvikis D. et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 2003; 52: 1602-1606.
  • 10 Gambhir SS, Czernin J, Schwimmer J. et al. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 42 (5 Suppl) 1S-93S.
  • 11 Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using amino- polyether supported nucleophilic substitution. J Nucl Med 1986; 27: 235-238.
  • 12 Horiuchi M, Yasuda S, Shohtsu A. et al. Four cases of Warthin's tumor of the parotid gland detected with FDG PET. Ann Nucl Med 1998; 12: 47-50.
  • 13 Hustinx R, Benard F, Alavi A. Whole-body FDG- PET imaging in the management of patients with cancer. Semin Nucl Med 2002; 32: 35-46.
  • 14 Okamura T, Kawabe J, Koyama K. et al. Fluor- ine-18 fluorodeoxyglucose positron emission tomography imaging of parotid mass lesions. Acta Otolaryngol Suppl 1998; 538: 209-213.
  • 15 Pich A, Chiusa L, Navone R. Prognostic relevance of cell proliferation in head and neck tumors. Ann Oncol 2004; 15: 1319-1329.
  • 16 Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000; 182: 311-322.
  • 17 Sherley JL, Kelly TJ. Regulation of human thy- midine kinase during the cell cycle. J Biol Chem 1988; 263: 8350-8358.
  • 18 Shields AF, Grierson JR, Dohmen BM. et al. Imaging proliferation in vivo with [18F]FLT and positron emission tomography. Nat Med 1998; 4: 1334-1336.
  • 19 Smyczek-Gargya B, Fersis N, Dittmann H. et al. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 2004; 31: 720-724.
  • 20 TNM Classification of malignant tumors. John Wiley & Sons; 2002
  • 21 Van Westreenen HL, Cobben DC, Jager PL. et al. Comparison of 18F-FLT PET and 18F-FDG PET in Esophageal Cancer. J Nucl Med 2005; 46: 400-404.
  • 22 Warburg O. The metabolism of tumors. London: Constable Press; 1930
  • 23 Warburg O. On respiratory impairment in cancer cells. Science 1956; 123: 309-314.
  • 24 Yap CS, Czernin J, Fishbein MC. et al. Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest 2006; 129: 393-401.