Yearbook of Medical Informatics, Table of Contents Yearb Med Inform 2016; 25(01): 234-239DOI: 10.15265/IY-2016-049 IMIA and Schattauer GmbH Georg Thieme Verlag KG StuttgartClinical Natural Language Processing in 2015: Leveraging the Variety of Texts of Clinical Interest A. Névéol 1 LIMSI CNRS UPR 3251, Université Paris Saclay, Orsay, France , P. Zweigenbaum 1 LIMSI CNRS UPR 3251, Université Paris Saclay, Orsay, France , Section Editors for the IMIA Yearbook Section on Natural Language Processing› Author AffiliationsRecommend Article Abstract Full Text PDF Download Keywords KeywordsAwards and prizes - decision making - computer-assisted - medical informatics/trends - natural language processing - semantics References References 1 Demner-Fushman D, Elhadad N. Aspiring to unintended consequences of Natural Language Processing: A Review of Recent Developments in Clinical and Consumer-Generated Text Processing.. Yearb Med Inform 2016 2 Li Q, Spooner SA, Kaiser M, Lingren N, Robbins J, Lingren T. et al. An end-to-end hybrid algorithm for automated medication discrepancy detection.. BMC Med Inform Decis Mak 2015; May 6 15: 37. 3 Luo Y, Xin Y, Hochberg E, Joshi R, Uzuner O, Szolovits P. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text.. J Am Med Inform Assoc 2015; Sep 22 (Suppl. 05) 1009-19. 4 Ni Y, Kennebeck S, Dexheimer JW, McAneney CM, Tang H, Lingren T. et al. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department.. J Am Med Inform Assoc 2015; Jan 22 (Suppl. 01) 166-78. 5 Oronoz M, Gojenola K, Pérez A, de Ilarraza AD, Casillas A. On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions.. J Biomed Inform 2015; Aug 56: 318-32. 6 Prud’hommeaux E, Roark B. Graph-Based Word Alignment for Clinical Language Evaluation.. Computational Linguistics 2015; Dec 41 4: 549-78. 7 Journal of Biomedical Informatics.. Volume 58, Supplement, December 2015, Proceedings of the 2014 i2b2/UTHealth Shared-Tasks and Workshop on Challenges in Natural Language Processing for Clinical Data. 8 Pradhan S, Elhadad N, South BR, Martinez D, Christensen L, Vogel A. et al. Evaluating the state of the art in disorder recognition and normalization of the clinical narrative.. J Am Med Inform Assoc 2015; Jan 22 (Suppl. 01) 143-54. 9 Lin C, Dligach D, Miller TA, Bethard S, Savova GK. Multilayered temporal modeling for the clinical domain.. J Am Med Inform Assoc 2016; Mar 23 (Suppl. 02) 387-95. 10 Chapman WW, Nadkarni PM, Hirschman L, D’Avolio LW, Savova GK, Uzuner O. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions.. J Am Med Inform Assoc 2011; SepOct 18 (Suppl. 05) 540-3. 11 Zheng K, Vydiswaran VG, Liu Y, Wang Y, Stubbs A, Uzuner Ö. et al. Ease of adoption of clinical natural language processing software: An evaluation of five systems.. J Biomed Inform 2015; Dec 58 Suppl: S189-96. 12 Suominen H, Zhou L, Hanlen L, Ferraro G. Benchmarking clinical speech recognition and information extraction: new data, methods, and evaluations.. JMIR Med Inform 2015; Apr 27 3 (Suppl. 02) e19. 13 Xiao B, Imel ZE, Georgiou PG, Atkins DC, Narayanan SS. “Rate My Therapist”: Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing.. PLoS One 2015; Dec 2 10 (Suppl. 012) e0143055. 14 Liu X, Chen H. A research framework for pharmacovigilance in health social media: Identification and evaluation of patient adverse drug event reports.. J Biomed Inform 2015; Dec 58: 268-79. 15 Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.. J Am Med Inform Assoc 2015; May 22 (Suppl. 03) 671-81. 16 Yu S, Liao KP, Shaw SY, Gainer VS, Churchill SE, Szolovits P. et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.. J Am Med Inform Assoc 2015; Sep 22 (Suppl. 05) 993-1000. 17 Mehrabi S, Krishnan A, Sohn S, Roch AM, Schmidt H, Kesterson J. et al. DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx.. J Biomed Inform 2015; Apr 54: 213-9. 18 Wu S, Miller T, Masanz J, Coarr M, Halgrim S, Carrell D. et al. Negation’s not solved: generalizability versus optimizability in clinical natural language processing.. PLoS One 2014; Nov 13 9 (Suppl. 11) e112774. 19 Jiang M, Huang Y, Fan JW, Tang B, Denny J, Xu H. Parsing clinical text: how good are the state-of-the-art parsers?. BMC Med Inform Decis Mak 2015; 15 (Suppl. 01) S2. 20 Wang Y, Pakhomov S, Ryan JO, Melton GB. Domain adaption of parsing for operative notes.. J Biomed Inform 2015; Apr 54: 1-9. 21 Zhang Y, Tang B, Jiang M, Wang J, Xu H. Domain adaptation for semantic role labeling of clinical text.. J Am Med Inform Assoc 2015; Sep 22 (Suppl. 05) 967-79. 22 Moon S, McInnes B, Melton GB. Challenges and practical approaches with word sense disambiguation of acronyms and abbreviations in the clinical domain.. Healthc Inform Res 2015; Jan 21 (Suppl. 01) 35-42. 23 Wu Y, Denny JC, Rosenbloom ST, Miller RA, Giuse DA, Song M. et al. A Preliminary Study of Clinical Abbreviation Disambiguation in Real Time.. Appl Clin Inform 2015; Jun 3 6 (Suppl. 02) 364-74. 24 Sun W, Rumshisky A, Uzuner O. Normalization of relative and incomplete temporal expressions in clinical narratives.. J Am Med Inform Assoc 2015; Sep 22 (Suppl. 05) 1001-8. 25 Lin C, Karlson EW, Dligach D, Ramirez MP, Miller TA, Mo H. et al. Automatic identification of methotrexate-induced liver toxicity in patients with rheumatoid arthritis from the electronic medical record.. J Am Med Inform Assoc 2015; Apr 22 (Suppl. 01) e151-61. 26 McCoy TH, Castro VM, Cagan A, Roberson AM, Kohane IS, Perlis RH. Sentiment Measured in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic Health Record Study.. PLoS One 2015; Aug 24 10 (Suppl. 08) e0136341. 27 Meng F, Morioka C. Automating the generation of lexical patterns for processing free text in clinical documents.. J Am Med Inform Assoc 2015; Sep 22 (Suppl. 05) 980-6. 28 Shivade C, Hebert C, Lopetegui M, de Marneffe MC, Fosler-Lussier E, Lai AM. Textual inference for eligibility criteria resolution in clinical trials.. J Biomed Inform 2015; Dec 58 Suppl: S211-8. 29 Koopman B, Zuccon G, Nguyen A, Bergheim A, Grayson N. Automatic ICD-10 classification of cancers from free-text death certificates.. Int J Med Inform 2015; Nov 84 (Suppl. 011) 956-65. 30 McCoy TH, Castro VM, Rosenfield HR, Cagan A, Kohane IS, Perlis RH. A clinical perspective on the relevance of research domain criteria in electronic health records.. Am J Psychiatry 2015; Apr 172 (Suppl. 04) 316-20. 31 Joffe E, Pettigrew EJ, Herskovic JR, Bearden CF, Bernstam EV. Expert guided natural language processing using one-class classification.. J Am Med Inform Assoc 2015; Sep 22 (Suppl. 05) 962-6.