CC BY 4.0 · Aorta (Stamford) 2017; 05(01): 11-20
DOI: 10.12945/j.aorta.2017.17.003
State-of-the-Art Review
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genes Associated with Thoracic Aortic Aneurysm and Dissection

An Update and Clinical Implications
Adam J. Brownstein
1   Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
,
Bulat A. Ziganshin
1   Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
,
Helena Kuivaniemi
2   Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
,
Simon C. Body
3   Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
,
Allen E. Bale
4   Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
,
John A. Elefteriades
1   Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
› Institutsangaben
Weitere Informationen

Corresponding Author

John A. Elefteriades, MD
Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine
789 Howard Ave, Clinic Building CB317, New Haven 06519, CT
USA   
Telefon: +1 203 785 2551   
Fax: +1 203 785 3552   

Publikationsverlauf

06. Januar 2017

06. Januar 2017

Publikationsdatum:
24. September 2018 (online)

 

Abstract

Thoracic aortic aneurysm (TAA) is a lethal disease, with a natural history of enlarging progressively until dissection or rupture occurs. Since the discovery almost 20 years ago that ascending TAAs are highly familial, our understanding of the genetics of thoracic aortic aneurysm and dissection (TAAD) has increased exponentially. At least 29 genes have been shown to be associated with the development of TAAD, the majority of which encode proteins involved in the extracellular matrix, smooth muscle cell contraction or metabolism, or the transforming growth factor-β signaling pathway. Almost one-quarter of TAAD patients have a mutation in one of these genes. In this review, we provide a summary of TAAD-associated genes, associated clinical features of the vasculature, and implications for surgical treatment of TAAD. With the widespread use of next-generation sequencing and development of novel functional assays, the future of the genetics of TAAD is bright, as both novel TAAD genes and variants within the genes will continue to be identified.


#

Thoracic aortic aneurysms (TAAs), which have an estimated annual incidence of 10.4 per 100,000 people[1], are typically clinically silent yet potentially fatal, as their natural history is to progressively expand until dissection or rupture occurs. Our genetic understanding of thoracic aortic aneurysm and dissection (TAAD) has rapidly advanced since the identification of the FBN1 gene as the cause of Marfan syndrome in 1991[2] and the discovery of the familial nature of TAAD in the late 1990s. While studies demonstrate that 20% of individuals with non-syndromic TAAD have a positive family history[3] [4], this percentage is most likely a marked underestimation, as not all family members of affected individuals undergo routine aortic imaging[5]. Of the 29 TAAD-associated genes identified to date, the majority encode proteins involved in the extracellular matrix, smooth muscle cell contraction or metabolism, or the transforming growth factor (TGF)-β signaling pathway ([Table 1]) (reviewed in[6] [7] [8] [9] [10] [11] [12] [13] [14]). Almost one-quarter of patients with TAAD possess a mutation in one of these genes[6], the majority of which are inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity[15] [16]. It is of interest to note that most genetic risk factors for aneurysms in other locations of the body (e.g., in intracranial arteries or the abdominal aorta) are different from those for TAAD[17] [18] [19].

Table 1.

Genes associated with syndromic and non-syndromic thoracic aortic aneurysm and dissection, associated vascular characteristics, and size criteria for elective surgical intervention.

Gene

Protein

Animal model leading to vascular phenotype?

Syndromic TAAD

Non-syndromic TAAD

Associated disease/syndrome

Associated clinical characteristics of the vasculature

Ascending aorta size (cm) for surgical intervention

Mode of inheritance

OMIM

ACTA2

Smooth muscle α-actin

No[30]

+

+

AAT6 + multisystemic smooth muscle dysfunction + MYMY5

TAAD, early aortic dissection[*], CAD, stroke (moyamoya disease), PDA, pulmonary artery dilation, BAV[6] [9]

4.5-5.0[a] [10] [31] [32]

AD

611788 613834 614042

BGN

Biglycan

Yes[33]

+

-

Meester-Loeys syndrome

ARD, TAAD, pulmonary artery aneurysm, IA, arterial tortuosity[34]

Standard

X-linked

300989

COL1A2

Collagen 1 α2 chain

No

+

-

EDS, arthrochalasia type (VIIb) + cardiac valvular type

Borderline aortic root enlargement[9] [35]

Standard

AD + AR

130060 225320

COL3A1

Collagen 3 α1 chain

Yes[36]

+

-

EDS, vascular type (IV)

TAAD, early aortic dissection[*], visceral arterial dissection, vessel fragility, IA[29] [37] [38]

5.0[b] [29]

AD

130050

COL5A1

Collagen 5 α1 chain

No[c]

+

-

EDS, classic type (I)

ARD, rupture/dissection of medium-sized arteries[39] [40] [41]

Standard

AD

130000

COL5A2

Collagen 5 α2 chain

No[d]

+

-

EDS, classic type (II)

ARD

Standard

AD

130000

EFEMP2

Fibulin-4

Yes[42] [43]

+

-

Cutis laxa, AR type Ib

Ascending aortic aneurysm, other arterial aneurysm, arterial tortuosity and stenosis

Standard

AR

614437

ELN

Elastin

No

+

-

Cutis laxa, AD

ARD, ascending aortic aneurysm/dissection, BAV, IA possibly associated with SVAS[44] [45] [46]

Standard

AD

123700 185500

EMILIN1

Elastin microfibril interfacer 1

No

+

-

Unidentified CTD

Ascending and descending aortic aneurysm[47]

Standard

AD

Unassigned

FBN1

Fibrillin-1

Yes[48] [49] [50] [51] [52]

+

+

Marfan syndrome

ARD, TAAD, AAA, other arterial aneurysm, pulmonary artery dilatation, arterial tortuosity[53]

5.0[10] [28]

AD

154700

FBN2

Fibrillin-2

No

+

-

Contractural arachnodactyly

Rare ARD and aortic dissection[54], BAV, PDA

Standard

AD

121050

FLNA

Filamin A

Yes[55] [56]

+

-

Periventricular nodular heterotopia

Aortic dilatation/aneurysm, peripheral arterial dilatation[57], PDA, IA[58], BAV

Standard

XLD

300049

FOXE3

Forkhead box 3

Yes[59]

-

+

AAT11

ARD, TAAD (primarily type A dissection)[59]

Standard

AD

617349

LOX

Lysyl oxidase

Yes[60] [61] [62] [63]

-

+

AAT10

TAAD, AAA, hepatic artery aneurysm, BAV, CAD

Standard

AD

617168

MAT2A

Methionine adenosyltransferase II alpha

No[e] [64]

-

+

FTAA

Thoracic aortic aneurysm, BAV[64]

Standard

AD

Unassigned

MFAP5

Microfibril-associated glycoprotein 2

Partially[f] [65]

-

+

AAT9

ARD, TAAD

Standard

AD

616166

MYH11

Smooth muscle myosin heavy chain

Partially[g] [66]

-

+

AAT4

TAAD, early aortic dissection[*], PDA, CAD, peripheral vascular occlusive disease, carotid IA

4.5-5.0[10] [67]

AD

132900

MYLK

Myosin light chain kinase

No[h] [68]

-

+

AAT7

TAAD, early aortic dissection[*]

4.5-5.0[a] [10] [68]

AD

613780

NOTCH1

NOTCH1

No

-

+

AOVD1

BAV/TAAD[69] [70]

Standard

AD

109730

PRKG1

Type 1 cGMP-dependent protein kinase

No

-

+

AAT8

TAAD, early aortic dissection[*], AAA, coronary artery aneurysm/dissection, aortic tortuosity, small vessel CVD

4.5-5.0[71]

AD

615436

SKI

Sloan Kettering proto-oncoprotein

No[i]

+

-

Shprintzen-Goldberg syndrome

ARD, arterial tortuosity, pulmonary artery dilation, other (splenic) arterial aneurysm[72]

Standard

AD

182212

SLC2A10

Glucose transporter 10

No[j]

+

-

Arterial tortuosity syndrome

ARD[73], ascending aortic aneurysm[73], other arterial aneurysm, arterial tortuosity, elongated arteries, aortic/pulmonary artery stenosis

Standard

AR

208050

SMAD2

SMAD2

No

+

-

Unidentified CTD with arterial aneurysm/dissection

ARD, ascending aortic aneurysm, vertebral/carotid aneurysm/dissection[74]

Standard

AD

Unassigned

SMAD3

SMAD3

Partially[k] [75]

+

+

LDS type 3

ARD, TAAD, early aortic dissection[*], AAA, arterial tortuosity, other arterial aneurysm/dissection, IA, BAV[76] [77]

4.0-4.2[10] [28]

AD

613795

SMAD4

SMAD4

Yes[78]

+

-

JP/HHT syndrome

ARD, TAAD, AVM, IA[79] [80]

Standard

AD

175050

TGFB2

TGF-β2

Yes[81]

+

+

LDS type 4

ARD, TAAD, arterial tortuosity, other arterial aneurysm, BAV[81] [82]

4.5-5.0[l] [83]

AD

614816

TGFB3

TGF-β3

No[m]

+

-

LDS type 5

ARD, TAAD, AAA/dissection, other arterial aneurysm, IA/dissection[84]

Standard

AD

615582

TGFBR1

TGF-β receptor type 1

Yes[85]

+

+

LDS type 1 + AAT5

TAAD, early aortic dissection[*], AAA, arterial tortuosity, other arterial aneurysm/dissection, IA, PDA, BAV[86]

4.0-4.5[n] [10] [26] [28]

AD

609192

TGFBR2

TGF-β receptor type 2

Yes[78] [85]

+

+

LDS type 2 + AAT3

TAAD, early aortic dissection[*], AAA, arterial tortuosity, other arterial aneurysm/dissection, IA, PDA, BAV[86]

4.0-4.5[n] [10] [26] [28]

AD

610168

It is important to note that as mutations in many of these genes are rare and have only recently been implicated in TAAD, there are a lack of adequate prospective clinical studies. Therefore, it is difficult to establish threshold diameters for intervention for TAA, and each individual must be considered on a case-by-case basis, taking into account the rate of change in aneurysm size (> 0.5 cm per year is considered rapid) and any family history of aortic dissection.


A “+” symbol in the syndromic or non-syndromic TAAD column indicates that mutations in the gene have been found in patients with syndromic or non-syndromic TAAD, respectively. A “-” symbol in the syndromic or non-syndromic TAAD column indicates that mutations in the gene have not been found in patients with syndromic or non-syndromic TAAD, respectively.


A reference is provided for each of the associated vascular characteristics not reported in the OMIM entry for that gene.


AAA = abdominal aortic aneurysm; AAT = aortic aneurysm = familial thoracic; AD = autosomal dominant; AOVD = aortic valve disease; AR = autosomal recessive; ARD = aortic root dilatation; AVM = arteriovenous malformation; BAV = bicuspid aortic valve; CAD = coronary artery disease; CTD = connective tissue disease; CVD = cerebrovascular disease; EDS = Ehlers-Danlos syndrome; FTAA = familial thoracic aortic aneurysm; HHT = hereditary hemorrhagic telangiectasia; IA = intracranial aneurysm; JP = juvenile polyposis; LDS = Loeys-Dietz syndrome; MYMY= moyamoya disease; OMIM = Online Mendelian Inheritance in Man; PDA = patent ductus arteriosus; SVAS = supravalvular aortic stenosis; TGF = transforming growth factor; TAAD = thoracic aortic aneurysm and dissection; TGFBR = TGF-β receptor; XLD = X-linked dominant


Standard = surgical intervention at 5.0-5.5 cm


* Early aortic dissection = dissection at aortic diameter < 5.0 cm


a Individuals with MYLK and ACTA2 mutations have been shown to have aortic dissections at a diameter of 4.0 cm[31] [68].


b There are no data to set threshold diameters for surgical intervention for EDS Type IV[28]. The Canadian guidelines recommend surgery for aortic root sizes of 4.0-5.0 cm and ascending aorta sizes of 4.2-5.0 cm, though these patients are at high risk of surgical complications due to poor-quality vascular tissue[87].


c Wenstrup et al. found that mice heterozygous for an inactivating mutation in Col5a1 exhibit decreased aortic compliance and tensile strength relative to wildtype mice[91].


d Park et al. illustrated that mice heterozygous for a null allele in Col5a2 exhibited increased aortic compliance and reduced tensile strength compared to wildtype mice[92].


e Guo et al. found that knockdown of mat2aa in zebrafish led to defective aortic arch development[64].


f Combs et al. demonstrated that Mfap2 and Mfap5 double knockout (Mfap2-/-;Mfap5-/-) mice exhibit age-dependent aortic dilation, though this is not the case with Mfap5 single knockout mice.


g While Kuang et al. reported that a mouse knock-in model (Myh11R247C/R247C) does not lead to a severe vascular phenotype under normal conditions[93], Bellini et al. demonstrated that induced hypertension in this mouse model led to intramural delaminations (separation of aortic wall layers without dissection) or premature deaths (due to aortic dissection based on necroscopy according to unpublished data by Bellini et al.) in over 20% of the R247C mice, accompanied by focal accumulation of glycosaminoglycans within the aortic wall (a typical histological feature of TAAD).


h Wang et al. demonstrated that SMC-specific knockdown of Mylk in mice led to histopathological changes (increased pools of proteoglycans) and altered gene expression consistent with medial degeneration of the aorta, though no aneurysm formation was observed.


i Doyle et al. found that knockdown of paralogs of mammalian SKI in zebrafish led to craniofacial and cardiac anomalies, including failure of cardiac looping and malformations of the outflow tract[72]. Berk et al. showed that mice lacking Ski exhibit craniofacial, skeletal muscle, and central nervous system abnormalities, which are all features of Shprintzen-Goldberg syndrome, but no evidence of aneurysm development was reported[94].


j Mice with homozygous missense mutations in Slc2a10 have not been shown to have the vascular abnormalities seen with arterial tortuosity syndrome[95], though Cheng et al. did demonstrate that such mice do exhibit abnormal elastogenesis within the aortic wall[96].


k Tan et al. demonstrated that Smad3 knockout mice only developed aortic aneurysms with angiotensin II-induced vascular inflammation, though the knockout mice did have medial dissections evident on histological analysis of their aortas and exhibited aortic dilatation relative to wildtype mice prior to angiotensin II infusion[75].


l There are limited data concerning the timing of surgical intervention for LDS type 4. However, there has been a case of a Type A aortic dissection at an aortic diameter < 5.0 cm[83], hence the recommended threshold range of 4.5-5.0 cm.


m Tgfb3 knockout mice die at birth from cleft palate[84], but minor differences in the position and curvature of the aortic arches of these mice compared to wildtype mice have been described[97].


n Current U.S. guidelines recommend prophylactic surgery for LDS types 1 and 2 at ascending aortic diameters of 4.0-4.2 cm(10, 28). However, the European guidelines state that more clinical data are required[29]. Patients with TGFBR2 mutations have similar outcomes to patients with FBN1 mutations once their disease is diagnosed([88]), and the clinical course of LDS 1 and 2 does not appear to be as severe as originally reported[26] [89] [90]. Therefore, medically treated adult patients with LDS 1 or 2 may not require prophylactic surgery at ascending aortic diameters of 4.0-4.2 cm[6]. Individuals with TGFBR2 mutations are more likely to have aortic dissections at diameters < 5.0 cm than those with TGFBR1 mutations[26] [90]. A more nuanced approach proposed by Jondeau et al. utilizing the presence of TGFBR2 mutations (vs. TGFBR1 mutations), the co-occurrence of severe systemic features (arterial tortuosity, hypertelorism, wide scarring), female gender, low body surface area, and a family history of dissection or rapid aortic root enlargement, which are all risk factors for aortic dissection, may be beneficial for LDS 1 and 2 patients to avoid unnecessary surgery at small aortic diameters[26]. Therefore, in LDS 1 or 2 individuals without the above features, Jondeau et al. maintain that 4.5 cm may be an appropriate threshold, but females with TGFBR2 mutations and severe systemic features may benefit from surgery at 4.0 cm[26].


TAAD has been classified into syndromic (associated with abnormalities of other organ systems) and non-syndromic (manifestations restricted to the aorta)[12] [20] categories, yet there is significant overlap in the genetic basis of syndromic and non-syndromic familial TAAD. Mutations in FBN1 and Loeys-Dietz syndrome (LDS) type 1-4 genes (TGFBR1, TGFBR2, SMAD3, and TGFB2) are estimated to account for 10% of familial non-syndromic TAAD[6]. Also, mutations in ACTA2 are estimated to cause 12-21% of familial TAAD, whereas mutations in other genes may each account for only 1-2% or less of non-syndromic TAAD[6]. The identification of specific mutated genes in patients with TAAD is crucial because it permits targeted genetic testing of apparently unaffected but currently undiagnosed family members. Furthermore, genetic information helps determine the patient’s risk for aortic dissection and rupture, especially mutations associated with vascular events at an ascending aorta size < 5.0 cm ([Figure 1]), which does not usually necessitate aortic resection in the absence of such mutations, a family history of aortic dissection, or rapid aneurysmal growth (> 0.5 cm/year). Identification of specific genetic variants associated with TAAD clinical outcomes may help predict how aortic disease will manifest and estimate the risk of other vascular diseases[6] ([Table 1]). Moreover, genotype-phenotype correlations have been established for both syndromic (FBN1, COL3A1, TGFBR1, and TGFBR2) and non-syndromic (ACTA2) TAAD, meaning that the specific genetic variant in TAAD-affected individuals can help predict the course and severity of disease[21] [22] [23] [24] [25] [26] [27].

Zoom Image
Figure 1. Simplified schematic illustration of ascending aorta dimensions for prophylactic surgical intervention divided by gene category: ECM genes, SMC contractile unit and metabolism genes, and TGF-β signaling pathway genes (data derived from [Table 1]). ECM, extracellular matrix; LDS, Loeys-Dietz syndrome; MFS, Marfan syndrome; SMC, smooth muscle cell; EDS, Ehlers-Danlos syndrome.

As stated in the most recent United States and European guidelines[28] [29], personalized care based on underlying genetic mutations is and will continue to be a critical aspect of high-quality patient care. As genetic testing becomes more widespread, individuals at genetic risk for TAAD may be identified earlier so that prophylactic medical and surgical intervention can be implemented to avert potentially fatal complications of TAAD. Furthermore, the utilization of next-generation sequencing could lead to the development of a comprehensive library of pathogenic genetic variants. As the genetic basis of TAAD is still a highly dynamic and burgeoning field, we present the most up-to-date list of genes associated with TAAD ([Table 1]). We plan to update this report annually, adding new genes, intervention criteria, and management recommendations as they become available.


#

Conflict of Interest

The authors have no conflict of interest relevant to this publication.

Acknowledgements

AJB was supported by the Richard K. Gershon, M.D., Student Research Fellowship and the Yale University School of Medicine Medical Student Research Fellowship.

  • References

  • 1 Ramanath VS, Oh JK, Sundt 3rd TM, Eagle KA. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clinic Proc 2009; 84: 465-481 . DOI: 10.1016/S0025-6196(11)60566-1
  • 2 Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM. , et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991; 352: 337-339 . DOI: 10.1038/352337a0
  • 3 Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg 1997; 25: 506-511 . DOI: 10.1016/S0741-5214(97)70261-1
  • 4 Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA. , et al. Familial patterns of thoracic aortic aneurysms. Arch Surg 1999; 134: 361-367 . DOI: 10.1001/archsurg.134.4.361
  • 5 Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Card 2010; 55: 841-857 . DOI: 10.1016/j.jacc.2009.08.084
  • 6 Milewicz D, Hostetler E, Wallace S, Mellor-Crummey L, Gong L, Pannu H. , et al. Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg (Torino) 2016; 57: 172-177 . PMID: 26837258
  • 7 Karimi A, Milewicz DM. Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can J Cardiol 2016; 32: 26-34 . DOI: 10.1016/j.cjca.2015.11.004
  • 8 Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation 2016; 133: 2516-2528 . DOI: 10.1161/CIRCULATIONAHA.116.009762
  • 9 Bradley TJ, Bowdin SC, Morel CF, Pyeritz RE. The expanding clinical spectrum of extracardiovascular and cardiovascular manifestations of heritable thoracic aortic aneurysm and dissection. Can J Cardiol 2016; 32: 86-99 . DOI: 10.1016/j.cjca.2015.11.007
  • 10 Andelfinger G, Loeys B, Dietz H. A decade of discovery in the genetic understanding of thoracic aortic disease. Can J Cardiol 2016; 32: 13-25 . DOI: 10.1016/j.cjca.2015.10.017
  • 11 Luyckx I, Loeys BL. The genetic architecture of non-syndromic thoracic aortic aneurysm. Heart 2015; 101: 1678-1684 . DOI: 10.1136/heartjnl-2014-306381
  • 12 Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg 2013; 2: 271-279 . DOI: 10.3978/j.issn.2225-319X.2013.05.12
  • 13 Gillis E, Van Laer L, Loeys BL. Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-beta signaling and vascular smooth muscle cell contractility. Circ Res 2013; 113: 327-340 . DOI: 10.1161/CIRCRESAHA.113.300675
  • 14 Elefteriades JA, Pomianowski P. Practical genetics of thoracic aortic aneurysm. Prog Cardiovasc Dis 2013; 56: 57-67 . DOI: 10.1016/j.pcad.2013.06.002
  • 15 Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA. , et al. Familial thoracic aortic aneurysms and dissections - Incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg 2006; 82: 1400-1406 . DOI: 10.1016/j.athoracsur.2006.04.098
  • 16 Milewicz DM, Chen H, Park ES, Petty EM, Zaghi H, Shashidhar G. , et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol 1998; 82: 474-479 . DOI: 10.1016/S0002-9149(98)00364-6
  • 17 Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2015; 13: 975-987 . DOI: 10.1586/14779072.2015.1074861
  • 18 Tromp G, Weinsheimer S, Ronkainen A, Kuivaniemi H. Molecular basis and genetic predisposition to intracranial aneurysm. Ann Med 2014; 46: 597-606 . DOI: 10.3109/07853890.2014.949299
  • 19 Jones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B. , et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res 2017; 120: 341-353 . DOI: 10.1161/CIRCRESAHA.116.308765
  • 20 El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 2009; 6: 771-786 . DOI: 10.1038/nrcardio.2009.191
  • 21 Franken R, Groenink M, de Waard V, Feenstra HM, Scholte AJ, van den Berg MP. , et al. Genotype impacts survival in Marfan syndrome. Eur Heart J 2016; 37: 3285-3290 . DOI: 10.1093/eurheartj/ehv739
  • 22 Baudhuin LM, Kotzer KE, Lagerstedt SA. Decreased frequency of FBN1 missense variants in Ghent criteria-positive Marfan syndrome and characterization of novel FBN1 variants. J Hum Genet 2015; 60: 241-252 . DOI: 10.1038/jhg.2015.10
  • 23 Frank M, Albuisson J, Ranque B, Golmard L, Mazzella JM, Bal-Theoleyre L. , et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur J Hum Genet 2015; 23: 1657-1664 . DOI: 10.1038/ejhg.2015.32
  • 24 Shalhub S, Black 3rd JH, Cecchi AC, Xu Z, Griswold BF, Safi HJ. , et al. Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arterial involvement and outcomes. J Vasc Surg 2014; 60: 160-169 . DOI: 10.1016/j.jvs.2014.01.070
  • 25 Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med 2014; 16: 881-888 . DOI: 10.1038/gim.2014.72
  • 26 Jondeau G, Ropers J, Regalado E, Braverman A, Evangelista A, Teixedo G. , et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet 2016; 9: 548-558 . DOI: 10.1161/CIRCGENETICS.116.001485
  • 27 Regalado ES, Guo DC, Prakash S, Bensend TA, Flynn K, Estrera A. , et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet 2015; 8: 457-464 . DOI: 10.1161/CIRCGENETICS.114.000943
  • 28 Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey Jr DE. , et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Card 2010; 55: e27-e129 . DOI: 10.1016/j.jacc.2010.02.015
  • 29 Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H. , et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J 2014; 35: 2873-2926 . DOI: 10.1093/eurheartj/ehu281
  • 30 Schildmeyer LA, Braun R, Taffet G, Debiasi M, Burns AE, Bradley A. , et al. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J 2000; 14: 2213-2220 . DOI: 10.1096/fj.99-0927com
  • 31 Disabella E, Grasso M, Gambarin FI, Narula N, Dore R, Favalli V. , et al. Risk of dissection in thoracic aneurysms associated with mutations of smooth muscle alpha-actin 2 (ACTA2). Heart 2011; 97: 321-326 . DOI: 10.1136/hrt.2010.204388
  • 32 Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N. , et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007; 39: 1488-1493 . DOI: 10.1038/ng.2007.6
  • 33 Heegaard AM, Corsi A, Danielsen CC, Nielsen KL, Jorgensen HL, Riminucci M. , et al. Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation 2007; 115: 2731-2738 . DOI: 10.1161/CIRCULATIONAHA.106.653980
  • 34 Meester JA, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S. , et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med 2017; 19: 386-395 . DOI: 10.1038/gim.2016.126
  • 35 Schwarze U, Hata R, McKusick VA, Shinkai H, Hoyme HE, Pyeritz RE. , et al. Rare autosomal rec[{AU: Please confirm or correct the conflict of interest statement. }]essive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet 2004; 74: 917-930 . DOI: 10.1086/420794
  • 36 Smith LB, Hadoke PW, Dyer E, Denvir MA, Brownstein D, Miller E. , et al. Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers-Danlos syndrome. Cardiovasc Res 2011; 90: 182-190 . DOI: 10.1093/cvr/cvq356
  • 37 De Paepe A, Malfait F. The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet 2012; 82: 1-11 . DOI: 10.1111/j.1399-0004.2012.01858.x
  • 38 Germain DP. Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis 2007; 2: 32 . DOI: 10.1186/1750-1172-2-32
  • 39 Monroe GR, Harakalova M, van der Crabben SN, Majoor-Krakauer D, Bertoli-Avella AM, Moll FL. , et al. Familial Ehlers-Danlos syndrome with lethal arterial events caused by a mutation in COL5A1. Am J Med Genet A 2015; 167: 1196-1203 . DOI: 10.1002/ajmg.a.36997
  • 40 Mehta S, Dhar SU, Birnbaum Y. Common iliac artery aneurysm and spontaneous dissection with contralateral iatrogenic common iliac artery dissection in classic Ehlers-Danlos syndrome. Int J Angiol 2012; 21: 167-170 . DOI: 10.1055/s-0032-1325118
  • 41 Wenstrup RJ, Meyer RA, Lyle JS, Hoechstetter L, Rose PS, Levy HP. , et al. Prevalence of aortic root dilation in the Ehlers-Danlos syndrome. Genet Med 2002; 4: 112-117 . DOI: 10.1097/00125817-200205000-00003
  • 42 Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA. , et al. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 2010; 106: 583-592 . DOI: 10.1161/CIRCRESAHA.109.207852
  • 43 Igoucheva O, Alexeev V, Halabi CM, Adams SM, Stoilov I, Sasaki T. , et al. Fibulin-4 E57K knock-in mice recapitulate cutaneous, vascular and skeletal defects of recessive cutis laxa 1B with both elastic fiber and collagen fibril abnormalities. J Biol Chem 2015; 290: 21443-21459 . DOI: 10.1074/jbc.M115.640425
  • 44 Jelsig AM, Urban Z, Hucthagowder V, Nissen H, Ousager LB. Novel ELN mutation in a family with supravalvular aortic stenosis and intracranial aneurysm. Eur J Med Genet 2017; 60: 110-113 . DOI: 10.1016/j.ejmg.2016.11.004
  • 45 Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E. , et al. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat 2011; 32: 445-455 . DOI: 10.1002/humu.21462
  • 46 Szabo Z, Crepeau MW, Mitchell AL, Stephan MJ, Puntel RA, Yin Loke K. , et al. Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet 2006; 43: 255-258 . DOI: 10.1136/jmg.2005.034157
  • 47 Capuano A, Bucciotti F, Farwell KD, Tippin DB, Mroske C, Hulick PJ. , et al. Diagnostic exome sequencing identifies a novel gene, EMILIN1, associated with autosomal-dominant hereditary connective tissue disease. Hum Mutat 2016; 37: 84-97 . DOI: 10.1002/humu.22920
  • 48 Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R. , et al. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 1997; 17: 218-222 . DOI: 10.1038/ng1097-218
  • 49 Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T. , et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 1999; 96: 3819-3823 . DOI: 10.1073/pnas.96.7.3819
  • 50 Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL. , et al. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 2004; 114: 172-181 . DOI: 10.1172/JCI20641
  • 51 Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK. , et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006; 312: 117-1121 . DOI: 10.1126/science.1124287
  • 52 Lima BL, Santos EJ, Fernandes GR, Merkel C, Mello MR, Gomes JP. , et al. A new mouse model for marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of FBN1 expression. PloS ONE 2010; 5: e14136 . DOI: 10.1371/journal.pone.0014136
  • 53 Morris SA, Orbach DB, Geva T, Singh MN, Gauvreau K, Lacro RV. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation 2011; 124: 388-396 . DOI: 10.1161/CIRCULATIONAHA.110.990549
  • 54 Takeda N, Morita H, Fujita D, Inuzuka R, Taniguchi Y, Imai Y. , et al. Congenital contractural arachnodactyly complicated with aortic dilatation and dissection: case report and review of literature. Am J Med Genet A 2015; 167A: 2382-2387 . DOI: 10.1002/ajmg.a.37162
  • 55 Retailleau K, Arhatte M, Demolombe S, Jodar M, Baudrie V, Offermanns S. , et al. Smooth muscle filamin A is a major determinant of conduit artery structure and function at the adult stage. Pflugers Arch 2016; 468: 1151-1160 . DOI: 10.1007/s00424-016-1813-x
  • 56 Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F. , et al. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci USA 2006; 103: 19836-19841 . DOI: 10.1073/pnas.0609628104
  • 57 Reinstein E, Frentz S, Morgan T, García-Miñaúr S, Leventer RJ, McGillivray G. , et al. Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A. Eur J Hum Genet 2013; 21: 494-502 . DOI: 10.1038/ejhg.2012.209
  • 58 Lange M, Kasper B, Bohring A, Rutsch F, Kluger G, Hoffjan S. , et al. 47 patients with FLNA associated periventricular nodular heterotopia. Orphanet J Rare Dis 2015; 10: 134 . DOI: 10.1186/s13023-015-0331-9
  • 59 Kuang SQ, Medina-Martinez O, Guo DC, Gong L, Regalado ES, Reynolds CL. , et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest 2016; 126: 948-961 . DOI: 10.1172/JCI83778
  • 60 Lee VS, Halabi CM, Hoffman EP, Carmichael N, Leshchiner I, Lian CG. , et al. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci USA 2016; 113: 8759-8764 . DOI: 10.1073/pnas.1601442113
  • 61 Hornstra IK, Birge S, Starcher B, Bailey AJ, Mecham RP, Shapiro SD. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem 2003; 278: 14387-14393 . DOI: 10.1074/jbc.M210144200
  • 62 Maki JM, Rasanen J, Tikkanen H, Sormunen R, Makikallio K, Kivirikko KI. , et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 2002; 106: 2503-2509 . DOI: 10.1161/01.CIR.0000038109.84500.1E
  • 63 Ren W, Liu Y, Wang X, Jia L, Piao C, Lan F. , et al. β-Aminopropionitrile monofumarate induces thoracic aortic dissection in C57BL/6 mice. Sci Rep 2016; 6: 28149 . DOI: 10.1038/srep28149
  • 64 Guo DC, Gong L, Regalado ES, Santos-Cortez RL, Zhao R, Cai B. , et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet 2015; 96: 170-177 . DOI: 10.1016/j.ajhg.2014.11.015
  • 65 Combs MD, Knutsen RH, Broekelmann TJ, Toennies HM, Brett TJ, Miller CA. , et al. Microfibril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. J Biol Chem 2013; 288: 28869-28880 . DOI: 10.1074/jbc.M113.497727
  • 66 Bellini C, Wang S, Milewicz DM, Humphrey JD. Myh11(R247C/R247C) mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity. J Biomech 2015; 48: 113-121 . DOI: 10.1016/j.jbiomech.2014.10.031
  • 67 Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C. , et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 2007; 16: 2453-2462 . DOI: 10.1093/hmg/ddm201
  • 68 Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E. , et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet 2010; 87: 701-707 . DOI: 10.1016/j.ajhg.2010.10.006
  • 69 McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt 3rd TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2007; 134: 290-296 . DOI: 10.1016/j.jtcvs.2007.02.041
  • 70 Proost D, Vandeweyer G, Meester JA, Salemink S, Kempers M, Ingram C. , et al. Performant mutation identification using targeted next-generation sequencing of 14 thoracic aortic aneurysm genes. Hum Mutat 2015; 36: 808-814 . DOI: 10.1002/humu.22802
  • 71 Guo DC, Regalado E, Casteel DE, Santos-Cortez RL, Gong L, Kim JJ. , et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet 2013; 93: 398-404 . DOI: 10.1016/j.ajhg.2013.06.019
  • 72 Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D. , et al. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet 2012; 44: 1249-1254 . DOI: 10.1038/ng.2421
  • 73 Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K, Albrecht B. , et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat 2008; 29: 150-158 . DOI: 10.1002/humu.20623
  • 74 Micha D, Guo DC, Hilhorst-Hofstee Y, van Kooten F, Atmaja D, Overwater E. , et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat 2015; 36: 1145-1149 . DOI: 10.1002/humu.22854
  • 75 Tan CK, Tan EH, Luo B, Huang CL, Loo JS, Choong C. , et al. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J Am Heart Assoc 2013; 2: e000269 . DOI: 10.1161/JAHA.113.000269
  • 76 van der Linde D, van de Laar IM, Bertoli-Avella AM, Oldenburg RA, Bekkers JA, Mattace-Raso FU. , et al. Aggressive cardiovascular phenotype of aneurysms-osteoarthritis syndrome caused by pathogenic SMAD3 variants. J Am Coll Cardiol 2012; 60: 397-403 . DOI: 10.1016/j.jacc.2011.12.052
  • 77 van de Laar IM, van der Linde D, Oei EH, Bos PK, Bessems JH, Bierma-Zeinstra SM. , et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet 2012; 49: 47-57 . DOI: 10.1136/jmedgenet-2011-100382
  • 78 Zhang P, Hou S, Chen J, Zhang J, Lin F, Ju R. , et al. SMAD4 deficiency in smooth muscle cells initiates the formation of aortic aneurysm. Circ Res 2016; 118: 388-399 . DOI: 10.1161/CIRCRESAHA.115.308040
  • 79 Heald B, Rigelsky C, Moran R, LaGuardia L, O’Malley M, Burke CA. , et al. Prevalence of thoracic aortopathy in patients with juvenile Polyposis Syndrome-Hereditary Hemorrhagic Telangiectasia due to SMAD4. Am J Med Genet A 2015; 167A: 1758-1762 . DOI: 10.1002/ajmg.a.37093
  • 80 Wain KE, Ellingson MS, McDonald J, Gammon A, Roberts M, Pichurin P. , et al. Appreciating the broad clinical features of SMAD4 mutation carriers: a multicenter chart review. Genet Med 2014; 16: 588-593 . DOI: 10.1038/gim.2014.5
  • 81 Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J. , et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet 2012; 44: 922-927 . DOI: 10.1038/ng.2349
  • 82 Boileau C, Guo DC, Hanna N, Regalado ES, Detaint D, Gong L. , et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet 2012; 44: 916-921 . DOI: 10.1038/ng.2348
  • 83 Renard M, Callewaert B, Malfait F, Campens L, Sharif S, del Campo M. , et al. Thoracic aortic-aneurysm and dissection in association with significant mitral valve disease caused by mutations in TGFB2. Int J Card 2013; 165: 584-587 . DOI: 10.1016/j.ijcard.2012.09.029
  • 84 Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JM, de Graaf BM, van de Beek G. , et al. Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol 2015; 65: 1324-1336 . DOI: 10.1016/j.jacc.2015.01.040
  • 85 Gallo EM, Loch DC, Habashi JP, Calderon JF, Chen Y, Bedja D. , et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest 2014; 124: 448-460 . DOI: 10.1172/JCI69666
  • 86 MacCarrick G, Black 3rd JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL. , et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med 2014; 16: 576-587 . DOI: 10.1038/gim.2014.11
  • 87 Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, McMurtry MS, Therrien J. , et al. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol 2014; 30: 577-589 . DOI: 10.1016/j.cjca.2014.02.018
  • 88 Attias D, Stheneur C, Roy C, Collod-Beroud G, Detaint D, Faivre L. , et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation 2009; 120: 2541-2549 . DOI: 10.1161/CIRCULATIONAHA.109.887042
  • 89 Teixido-Tura G, Franken R, Galuppo V, Gutierrez Garcia-Moreno L, Borregan M, Mulder BJ. , et al. Heterogeneity of aortic disease severity in patients with Loeys-Dietz syndrome. Heart 2016; 102: 626-632 . DOI: 10.1136/heartjnl-2015-308535
  • 90 Tran-Fadulu V, Pannu H, Kim DH, Vick 3rd GW, Lonsford CM, Lafont AL. , et al. Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet 2009; 46: 607-613 . DOI: 10.1136/jmg.2008.062844
  • 91 Wenstrup RJ, Florer JB, Davidson JM, Phillips CL, Pfeiffer BJ, Menezes DW. , et al. Murine model of the Ehlers-Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 2006; 281: 12888-12895 . DOI: 10.1074/jbc.M511528200
  • 92 Park AC, Phillips CL, Pfeiffer FM, Roenneburg DA, Kernien JF, Adams SM. , et al. Homozygosity and heterozygosity for null COL5A2 alleles produce embryonic lethality and a novel classic Ehlers-Danlos syndrome-related phenotype. Am J Pathol 2015; 185: 2000-2011 . DOI: 10.1016/j.ajpath.2015.03.022
  • 93 Kuang SQ, Kwartler CS, Byanova KL, Pham J, Gong L, Prakash SK. , et al. Rare, nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and phenotype of smooth muscle cells. Circ Res 2012; 110: 1411-1422 . DOI: 10.1161/CIRCRESAHA.111.261743
  • 94 Berk M, Desai SY, Heyman HC, Colmenares C. Mice lacking the SKI proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev 1997; 11: 2029-2039 . DOI: 10.1101/gad.11.16.2029
  • 95 Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical alphavbeta3 integrin-mediated TGFbeta signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet 2015; 24: 6769-6787 . DOI: 10.1093/hmg/ddv382
  • 96 Cheng CH, Kikuchi T, Chen YH, Sabbagha NG, Lee YC, Pan HJ. , et al. Mutations in the SLC2A10 gene cause arterial abnormalities in mice. Cardiovasc Res 2009; 81: 381-388 . DOI: 10.1093/cvr/cvn319
  • 97 Azhar M, Schultz JJ, Grupp I, Dorn 2nd GW, Meneton P, Molin DG. , et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 2003; 14: 391-407 . DOI: 10.1016/S1359-6101(03)00044-3

Corresponding Author

John A. Elefteriades, MD
Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine
789 Howard Ave, Clinic Building CB317, New Haven 06519, CT
USA   
Telefon: +1 203 785 2551   
Fax: +1 203 785 3552   

  • References

  • 1 Ramanath VS, Oh JK, Sundt 3rd TM, Eagle KA. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clinic Proc 2009; 84: 465-481 . DOI: 10.1016/S0025-6196(11)60566-1
  • 2 Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM. , et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991; 352: 337-339 . DOI: 10.1038/352337a0
  • 3 Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg 1997; 25: 506-511 . DOI: 10.1016/S0741-5214(97)70261-1
  • 4 Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA. , et al. Familial patterns of thoracic aortic aneurysms. Arch Surg 1999; 134: 361-367 . DOI: 10.1001/archsurg.134.4.361
  • 5 Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Card 2010; 55: 841-857 . DOI: 10.1016/j.jacc.2009.08.084
  • 6 Milewicz D, Hostetler E, Wallace S, Mellor-Crummey L, Gong L, Pannu H. , et al. Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg (Torino) 2016; 57: 172-177 . PMID: 26837258
  • 7 Karimi A, Milewicz DM. Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can J Cardiol 2016; 32: 26-34 . DOI: 10.1016/j.cjca.2015.11.004
  • 8 Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation 2016; 133: 2516-2528 . DOI: 10.1161/CIRCULATIONAHA.116.009762
  • 9 Bradley TJ, Bowdin SC, Morel CF, Pyeritz RE. The expanding clinical spectrum of extracardiovascular and cardiovascular manifestations of heritable thoracic aortic aneurysm and dissection. Can J Cardiol 2016; 32: 86-99 . DOI: 10.1016/j.cjca.2015.11.007
  • 10 Andelfinger G, Loeys B, Dietz H. A decade of discovery in the genetic understanding of thoracic aortic disease. Can J Cardiol 2016; 32: 13-25 . DOI: 10.1016/j.cjca.2015.10.017
  • 11 Luyckx I, Loeys BL. The genetic architecture of non-syndromic thoracic aortic aneurysm. Heart 2015; 101: 1678-1684 . DOI: 10.1136/heartjnl-2014-306381
  • 12 Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg 2013; 2: 271-279 . DOI: 10.3978/j.issn.2225-319X.2013.05.12
  • 13 Gillis E, Van Laer L, Loeys BL. Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-beta signaling and vascular smooth muscle cell contractility. Circ Res 2013; 113: 327-340 . DOI: 10.1161/CIRCRESAHA.113.300675
  • 14 Elefteriades JA, Pomianowski P. Practical genetics of thoracic aortic aneurysm. Prog Cardiovasc Dis 2013; 56: 57-67 . DOI: 10.1016/j.pcad.2013.06.002
  • 15 Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA. , et al. Familial thoracic aortic aneurysms and dissections - Incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg 2006; 82: 1400-1406 . DOI: 10.1016/j.athoracsur.2006.04.098
  • 16 Milewicz DM, Chen H, Park ES, Petty EM, Zaghi H, Shashidhar G. , et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol 1998; 82: 474-479 . DOI: 10.1016/S0002-9149(98)00364-6
  • 17 Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2015; 13: 975-987 . DOI: 10.1586/14779072.2015.1074861
  • 18 Tromp G, Weinsheimer S, Ronkainen A, Kuivaniemi H. Molecular basis and genetic predisposition to intracranial aneurysm. Ann Med 2014; 46: 597-606 . DOI: 10.3109/07853890.2014.949299
  • 19 Jones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B. , et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res 2017; 120: 341-353 . DOI: 10.1161/CIRCRESAHA.116.308765
  • 20 El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 2009; 6: 771-786 . DOI: 10.1038/nrcardio.2009.191
  • 21 Franken R, Groenink M, de Waard V, Feenstra HM, Scholte AJ, van den Berg MP. , et al. Genotype impacts survival in Marfan syndrome. Eur Heart J 2016; 37: 3285-3290 . DOI: 10.1093/eurheartj/ehv739
  • 22 Baudhuin LM, Kotzer KE, Lagerstedt SA. Decreased frequency of FBN1 missense variants in Ghent criteria-positive Marfan syndrome and characterization of novel FBN1 variants. J Hum Genet 2015; 60: 241-252 . DOI: 10.1038/jhg.2015.10
  • 23 Frank M, Albuisson J, Ranque B, Golmard L, Mazzella JM, Bal-Theoleyre L. , et al. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur J Hum Genet 2015; 23: 1657-1664 . DOI: 10.1038/ejhg.2015.32
  • 24 Shalhub S, Black 3rd JH, Cecchi AC, Xu Z, Griswold BF, Safi HJ. , et al. Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arterial involvement and outcomes. J Vasc Surg 2014; 60: 160-169 . DOI: 10.1016/j.jvs.2014.01.070
  • 25 Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med 2014; 16: 881-888 . DOI: 10.1038/gim.2014.72
  • 26 Jondeau G, Ropers J, Regalado E, Braverman A, Evangelista A, Teixedo G. , et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet 2016; 9: 548-558 . DOI: 10.1161/CIRCGENETICS.116.001485
  • 27 Regalado ES, Guo DC, Prakash S, Bensend TA, Flynn K, Estrera A. , et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet 2015; 8: 457-464 . DOI: 10.1161/CIRCGENETICS.114.000943
  • 28 Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey Jr DE. , et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Card 2010; 55: e27-e129 . DOI: 10.1016/j.jacc.2010.02.015
  • 29 Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H. , et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J 2014; 35: 2873-2926 . DOI: 10.1093/eurheartj/ehu281
  • 30 Schildmeyer LA, Braun R, Taffet G, Debiasi M, Burns AE, Bradley A. , et al. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J 2000; 14: 2213-2220 . DOI: 10.1096/fj.99-0927com
  • 31 Disabella E, Grasso M, Gambarin FI, Narula N, Dore R, Favalli V. , et al. Risk of dissection in thoracic aneurysms associated with mutations of smooth muscle alpha-actin 2 (ACTA2). Heart 2011; 97: 321-326 . DOI: 10.1136/hrt.2010.204388
  • 32 Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N. , et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007; 39: 1488-1493 . DOI: 10.1038/ng.2007.6
  • 33 Heegaard AM, Corsi A, Danielsen CC, Nielsen KL, Jorgensen HL, Riminucci M. , et al. Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation 2007; 115: 2731-2738 . DOI: 10.1161/CIRCULATIONAHA.106.653980
  • 34 Meester JA, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S. , et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med 2017; 19: 386-395 . DOI: 10.1038/gim.2016.126
  • 35 Schwarze U, Hata R, McKusick VA, Shinkai H, Hoyme HE, Pyeritz RE. , et al. Rare autosomal rec[{AU: Please confirm or correct the conflict of interest statement. }]essive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet 2004; 74: 917-930 . DOI: 10.1086/420794
  • 36 Smith LB, Hadoke PW, Dyer E, Denvir MA, Brownstein D, Miller E. , et al. Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers-Danlos syndrome. Cardiovasc Res 2011; 90: 182-190 . DOI: 10.1093/cvr/cvq356
  • 37 De Paepe A, Malfait F. The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet 2012; 82: 1-11 . DOI: 10.1111/j.1399-0004.2012.01858.x
  • 38 Germain DP. Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis 2007; 2: 32 . DOI: 10.1186/1750-1172-2-32
  • 39 Monroe GR, Harakalova M, van der Crabben SN, Majoor-Krakauer D, Bertoli-Avella AM, Moll FL. , et al. Familial Ehlers-Danlos syndrome with lethal arterial events caused by a mutation in COL5A1. Am J Med Genet A 2015; 167: 1196-1203 . DOI: 10.1002/ajmg.a.36997
  • 40 Mehta S, Dhar SU, Birnbaum Y. Common iliac artery aneurysm and spontaneous dissection with contralateral iatrogenic common iliac artery dissection in classic Ehlers-Danlos syndrome. Int J Angiol 2012; 21: 167-170 . DOI: 10.1055/s-0032-1325118
  • 41 Wenstrup RJ, Meyer RA, Lyle JS, Hoechstetter L, Rose PS, Levy HP. , et al. Prevalence of aortic root dilation in the Ehlers-Danlos syndrome. Genet Med 2002; 4: 112-117 . DOI: 10.1097/00125817-200205000-00003
  • 42 Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA. , et al. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 2010; 106: 583-592 . DOI: 10.1161/CIRCRESAHA.109.207852
  • 43 Igoucheva O, Alexeev V, Halabi CM, Adams SM, Stoilov I, Sasaki T. , et al. Fibulin-4 E57K knock-in mice recapitulate cutaneous, vascular and skeletal defects of recessive cutis laxa 1B with both elastic fiber and collagen fibril abnormalities. J Biol Chem 2015; 290: 21443-21459 . DOI: 10.1074/jbc.M115.640425
  • 44 Jelsig AM, Urban Z, Hucthagowder V, Nissen H, Ousager LB. Novel ELN mutation in a family with supravalvular aortic stenosis and intracranial aneurysm. Eur J Med Genet 2017; 60: 110-113 . DOI: 10.1016/j.ejmg.2016.11.004
  • 45 Callewaert B, Renard M, Hucthagowder V, Albrecht B, Hausser I, Blair E. , et al. New insights into the pathogenesis of autosomal-dominant cutis laxa with report of five ELN mutations. Hum Mutat 2011; 32: 445-455 . DOI: 10.1002/humu.21462
  • 46 Szabo Z, Crepeau MW, Mitchell AL, Stephan MJ, Puntel RA, Yin Loke K. , et al. Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet 2006; 43: 255-258 . DOI: 10.1136/jmg.2005.034157
  • 47 Capuano A, Bucciotti F, Farwell KD, Tippin DB, Mroske C, Hulick PJ. , et al. Diagnostic exome sequencing identifies a novel gene, EMILIN1, associated with autosomal-dominant hereditary connective tissue disease. Hum Mutat 2016; 37: 84-97 . DOI: 10.1002/humu.22920
  • 48 Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R. , et al. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 1997; 17: 218-222 . DOI: 10.1038/ng1097-218
  • 49 Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T. , et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 1999; 96: 3819-3823 . DOI: 10.1073/pnas.96.7.3819
  • 50 Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL. , et al. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 2004; 114: 172-181 . DOI: 10.1172/JCI20641
  • 51 Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK. , et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006; 312: 117-1121 . DOI: 10.1126/science.1124287
  • 52 Lima BL, Santos EJ, Fernandes GR, Merkel C, Mello MR, Gomes JP. , et al. A new mouse model for marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of FBN1 expression. PloS ONE 2010; 5: e14136 . DOI: 10.1371/journal.pone.0014136
  • 53 Morris SA, Orbach DB, Geva T, Singh MN, Gauvreau K, Lacro RV. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation 2011; 124: 388-396 . DOI: 10.1161/CIRCULATIONAHA.110.990549
  • 54 Takeda N, Morita H, Fujita D, Inuzuka R, Taniguchi Y, Imai Y. , et al. Congenital contractural arachnodactyly complicated with aortic dilatation and dissection: case report and review of literature. Am J Med Genet A 2015; 167A: 2382-2387 . DOI: 10.1002/ajmg.a.37162
  • 55 Retailleau K, Arhatte M, Demolombe S, Jodar M, Baudrie V, Offermanns S. , et al. Smooth muscle filamin A is a major determinant of conduit artery structure and function at the adult stage. Pflugers Arch 2016; 468: 1151-1160 . DOI: 10.1007/s00424-016-1813-x
  • 56 Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F. , et al. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci USA 2006; 103: 19836-19841 . DOI: 10.1073/pnas.0609628104
  • 57 Reinstein E, Frentz S, Morgan T, García-Miñaúr S, Leventer RJ, McGillivray G. , et al. Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A. Eur J Hum Genet 2013; 21: 494-502 . DOI: 10.1038/ejhg.2012.209
  • 58 Lange M, Kasper B, Bohring A, Rutsch F, Kluger G, Hoffjan S. , et al. 47 patients with FLNA associated periventricular nodular heterotopia. Orphanet J Rare Dis 2015; 10: 134 . DOI: 10.1186/s13023-015-0331-9
  • 59 Kuang SQ, Medina-Martinez O, Guo DC, Gong L, Regalado ES, Reynolds CL. , et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest 2016; 126: 948-961 . DOI: 10.1172/JCI83778
  • 60 Lee VS, Halabi CM, Hoffman EP, Carmichael N, Leshchiner I, Lian CG. , et al. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci USA 2016; 113: 8759-8764 . DOI: 10.1073/pnas.1601442113
  • 61 Hornstra IK, Birge S, Starcher B, Bailey AJ, Mecham RP, Shapiro SD. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem 2003; 278: 14387-14393 . DOI: 10.1074/jbc.M210144200
  • 62 Maki JM, Rasanen J, Tikkanen H, Sormunen R, Makikallio K, Kivirikko KI. , et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 2002; 106: 2503-2509 . DOI: 10.1161/01.CIR.0000038109.84500.1E
  • 63 Ren W, Liu Y, Wang X, Jia L, Piao C, Lan F. , et al. β-Aminopropionitrile monofumarate induces thoracic aortic dissection in C57BL/6 mice. Sci Rep 2016; 6: 28149 . DOI: 10.1038/srep28149
  • 64 Guo DC, Gong L, Regalado ES, Santos-Cortez RL, Zhao R, Cai B. , et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet 2015; 96: 170-177 . DOI: 10.1016/j.ajhg.2014.11.015
  • 65 Combs MD, Knutsen RH, Broekelmann TJ, Toennies HM, Brett TJ, Miller CA. , et al. Microfibril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. J Biol Chem 2013; 288: 28869-28880 . DOI: 10.1074/jbc.M113.497727
  • 66 Bellini C, Wang S, Milewicz DM, Humphrey JD. Myh11(R247C/R247C) mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity. J Biomech 2015; 48: 113-121 . DOI: 10.1016/j.jbiomech.2014.10.031
  • 67 Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C. , et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 2007; 16: 2453-2462 . DOI: 10.1093/hmg/ddm201
  • 68 Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E. , et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet 2010; 87: 701-707 . DOI: 10.1016/j.ajhg.2010.10.006
  • 69 McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt 3rd TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2007; 134: 290-296 . DOI: 10.1016/j.jtcvs.2007.02.041
  • 70 Proost D, Vandeweyer G, Meester JA, Salemink S, Kempers M, Ingram C. , et al. Performant mutation identification using targeted next-generation sequencing of 14 thoracic aortic aneurysm genes. Hum Mutat 2015; 36: 808-814 . DOI: 10.1002/humu.22802
  • 71 Guo DC, Regalado E, Casteel DE, Santos-Cortez RL, Gong L, Kim JJ. , et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet 2013; 93: 398-404 . DOI: 10.1016/j.ajhg.2013.06.019
  • 72 Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D. , et al. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet 2012; 44: 1249-1254 . DOI: 10.1038/ng.2421
  • 73 Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K, Albrecht B. , et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat 2008; 29: 150-158 . DOI: 10.1002/humu.20623
  • 74 Micha D, Guo DC, Hilhorst-Hofstee Y, van Kooten F, Atmaja D, Overwater E. , et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat 2015; 36: 1145-1149 . DOI: 10.1002/humu.22854
  • 75 Tan CK, Tan EH, Luo B, Huang CL, Loo JS, Choong C. , et al. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J Am Heart Assoc 2013; 2: e000269 . DOI: 10.1161/JAHA.113.000269
  • 76 van der Linde D, van de Laar IM, Bertoli-Avella AM, Oldenburg RA, Bekkers JA, Mattace-Raso FU. , et al. Aggressive cardiovascular phenotype of aneurysms-osteoarthritis syndrome caused by pathogenic SMAD3 variants. J Am Coll Cardiol 2012; 60: 397-403 . DOI: 10.1016/j.jacc.2011.12.052
  • 77 van de Laar IM, van der Linde D, Oei EH, Bos PK, Bessems JH, Bierma-Zeinstra SM. , et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet 2012; 49: 47-57 . DOI: 10.1136/jmedgenet-2011-100382
  • 78 Zhang P, Hou S, Chen J, Zhang J, Lin F, Ju R. , et al. SMAD4 deficiency in smooth muscle cells initiates the formation of aortic aneurysm. Circ Res 2016; 118: 388-399 . DOI: 10.1161/CIRCRESAHA.115.308040
  • 79 Heald B, Rigelsky C, Moran R, LaGuardia L, O’Malley M, Burke CA. , et al. Prevalence of thoracic aortopathy in patients with juvenile Polyposis Syndrome-Hereditary Hemorrhagic Telangiectasia due to SMAD4. Am J Med Genet A 2015; 167A: 1758-1762 . DOI: 10.1002/ajmg.a.37093
  • 80 Wain KE, Ellingson MS, McDonald J, Gammon A, Roberts M, Pichurin P. , et al. Appreciating the broad clinical features of SMAD4 mutation carriers: a multicenter chart review. Genet Med 2014; 16: 588-593 . DOI: 10.1038/gim.2014.5
  • 81 Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J. , et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet 2012; 44: 922-927 . DOI: 10.1038/ng.2349
  • 82 Boileau C, Guo DC, Hanna N, Regalado ES, Detaint D, Gong L. , et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet 2012; 44: 916-921 . DOI: 10.1038/ng.2348
  • 83 Renard M, Callewaert B, Malfait F, Campens L, Sharif S, del Campo M. , et al. Thoracic aortic-aneurysm and dissection in association with significant mitral valve disease caused by mutations in TGFB2. Int J Card 2013; 165: 584-587 . DOI: 10.1016/j.ijcard.2012.09.029
  • 84 Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JM, de Graaf BM, van de Beek G. , et al. Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol 2015; 65: 1324-1336 . DOI: 10.1016/j.jacc.2015.01.040
  • 85 Gallo EM, Loch DC, Habashi JP, Calderon JF, Chen Y, Bedja D. , et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest 2014; 124: 448-460 . DOI: 10.1172/JCI69666
  • 86 MacCarrick G, Black 3rd JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL. , et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med 2014; 16: 576-587 . DOI: 10.1038/gim.2014.11
  • 87 Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, McMurtry MS, Therrien J. , et al. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol 2014; 30: 577-589 . DOI: 10.1016/j.cjca.2014.02.018
  • 88 Attias D, Stheneur C, Roy C, Collod-Beroud G, Detaint D, Faivre L. , et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation 2009; 120: 2541-2549 . DOI: 10.1161/CIRCULATIONAHA.109.887042
  • 89 Teixido-Tura G, Franken R, Galuppo V, Gutierrez Garcia-Moreno L, Borregan M, Mulder BJ. , et al. Heterogeneity of aortic disease severity in patients with Loeys-Dietz syndrome. Heart 2016; 102: 626-632 . DOI: 10.1136/heartjnl-2015-308535
  • 90 Tran-Fadulu V, Pannu H, Kim DH, Vick 3rd GW, Lonsford CM, Lafont AL. , et al. Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet 2009; 46: 607-613 . DOI: 10.1136/jmg.2008.062844
  • 91 Wenstrup RJ, Florer JB, Davidson JM, Phillips CL, Pfeiffer BJ, Menezes DW. , et al. Murine model of the Ehlers-Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 2006; 281: 12888-12895 . DOI: 10.1074/jbc.M511528200
  • 92 Park AC, Phillips CL, Pfeiffer FM, Roenneburg DA, Kernien JF, Adams SM. , et al. Homozygosity and heterozygosity for null COL5A2 alleles produce embryonic lethality and a novel classic Ehlers-Danlos syndrome-related phenotype. Am J Pathol 2015; 185: 2000-2011 . DOI: 10.1016/j.ajpath.2015.03.022
  • 93 Kuang SQ, Kwartler CS, Byanova KL, Pham J, Gong L, Prakash SK. , et al. Rare, nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and phenotype of smooth muscle cells. Circ Res 2012; 110: 1411-1422 . DOI: 10.1161/CIRCRESAHA.111.261743
  • 94 Berk M, Desai SY, Heyman HC, Colmenares C. Mice lacking the SKI proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev 1997; 11: 2029-2039 . DOI: 10.1101/gad.11.16.2029
  • 95 Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical alphavbeta3 integrin-mediated TGFbeta signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet 2015; 24: 6769-6787 . DOI: 10.1093/hmg/ddv382
  • 96 Cheng CH, Kikuchi T, Chen YH, Sabbagha NG, Lee YC, Pan HJ. , et al. Mutations in the SLC2A10 gene cause arterial abnormalities in mice. Cardiovasc Res 2009; 81: 381-388 . DOI: 10.1093/cvr/cvn319
  • 97 Azhar M, Schultz JJ, Grupp I, Dorn 2nd GW, Meneton P, Molin DG. , et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 2003; 14: 391-407 . DOI: 10.1016/S1359-6101(03)00044-3

Zoom Image
Figure 1. Simplified schematic illustration of ascending aorta dimensions for prophylactic surgical intervention divided by gene category: ECM genes, SMC contractile unit and metabolism genes, and TGF-β signaling pathway genes (data derived from [Table 1]). ECM, extracellular matrix; LDS, Loeys-Dietz syndrome; MFS, Marfan syndrome; SMC, smooth muscle cell; EDS, Ehlers-Danlos syndrome.