Nuklearmedizin 2007; 46(05): 175-180
DOI: 10.1160/nukmed-0077
11C-Choline-PET/CT vs. WB-MRI in prostate cancer
Schattauer GmbH

Radiation dosimetry and biodistribution of the beta-amyloid plaque imaging tracer 11C-BTA-1 in humans

Dosimetrie und Biodistribution des an beta-Amyloidplaques bindenden Radiopharmakons 11C-BTA-1
S. Thees
1   Klink für Nuklearmedizin
3   Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universität Leipzig, Germany
,
B. Neumaier
1   Klink für Nuklearmedizin
,
G. Glatting
1   Klink für Nuklearmedizin
,
S. Deisenhofer
1   Klink für Nuklearmedizin
,
C. A. F. von Arnim
2   Abteilung für Neurologie, Universität Ulm, Germany
,
S. N. Reske
1   Klink für Nuklearmedizin
,
F. M. Mottaghy
1   Klink für Nuklearmedizin
› Author Affiliations
Further Information

Publication History

Received: 12 December 2006

accepted in revised form: 03 May 2007

Publication Date:
29 December 2017 (online)

Summary

Aim: [N-methyl-11C]2-(4'-(methylaminophenyl)-benzothiazole (11C-BTA-1) is a thioflavin-T derivative that has been one of the promising PET tracers for imaging of amyloid plaque distribution in the Alzheimer patients brain in vivo. The biodistribution and dosimetry of this tracer in humans is presented and compared to the results of a previous dosimetry and biodistribution study of another thioflavin-T derivative [N-methyl-11C]2-hydroxy-(4'-(methylaminophenyl)- benzothiazole (11C-OH-BTA-1) in baboons. Methods: Five subjects underwent 2D dynamic PET imaging. Source organs were segmented using a semiautomatic algorithm based on clustering. Residence times for each source organ were determined by analytical integration of an exponential fit of the time activity curves. Finally organ doses were estimated using the software OLINDA/EXM. Results: The administration of 286 ± 93 MBq 11C-BTA-1 was well tolerated by all subjects. Effective radiation dose was 4.3 μSv/MBq, range 3.6–5.0 μSv/MBq. In four of the five subjects the liver, in one of the subjects the gallbladder was the critical organ. Conclusion: The radiation burden of a single dose of 300 MBq 11C-BTA-1 is within the accepted limits for research purpose. In contrast to the previous non-human primate study revealing the gallbladder as the critical organ for 11C-6-OH-BTA-1, we found the liver as the critical organ in humans using 11C-BTA-1. Possible explanations may be (1) a reduced bile concentration of 11C-BTA-1 due to the absent OH-group or (2) a different hepatic metabolism of thioflavin derivatives in human and baboon.

Zusammenfassung

Ziel: Das Thioflavinderivat [N-Methyl-11C]2-(4'-(methylaminophenyl)-benzothiazol (11C-BTA-1) wurde als einer der viel versprechendsten PET-Tracer zur in vivo Darstellung der Amyloid-Plaques im Gehirn von Alzheimer-Patienten vorgestellt. Hier präsentieren wir die Biodistribution und Dosimetrie dieses Tracers im Menschen und vergleichen die Ergebnisse mit einer anderen Studie welche die Biodistribution und Dosimetrie des Thioflavinderivats [N-Methyl- 11C]2-hydroxy-(4'-(methylaminophenyl)-benzothiazol (11C-OH-BTA-1) am Pavian untersucht hat. Methoden: An fönf Probanden wurde eine 2D-PET-Bildgebung durchgefuhrt. Die verschiedenen, sichtbar anreichernden Organe wurden mittels eines halbautomatischen Algorithmus segmentiert. Die Verweildauer für die segmentierten Organe wurde mittels einer analytischen Integration des exponentiellen Fits der Zeit-Aktivitäts-Kurven bestimmt. Schließlich wurden die Organdosen berechnet (OLINDA/ EXM). Ergebnisse: Die Gabe von 286 ± 93 MBq 11C-BTA-1 wurde von allen Probanden gut toleriert. Die effektive Strahlungsdosis betrug 4.3 μSv/MBq, Spannweite 3.6–5.0 μSv/MBq. Bei vier Probanden war die Leber, bei einem die Gallenblase das kritische Organ. Schlussfolgerungen: Die Strahlenbelastung einer Einzeldosis von 300 MBq 11C-BTA-1 liegt innerhalb der für wissenschaftliche Zwecke akzeptierten Grenzen. Im Gegensatz zu einer vorangegangenen Primaten-Studie, die für 11C-6-OH-BTA-1 die Gallenblase als das kritische Organ bestimmt hat, ergab sich im Menschen für 11C-BTA-1 die Leber als das kritische Organ. Erklärungen hierfür sind: (1) eine reduzierte biliare Konzentration von 11C-BTA-1 auf Grund der abwesenden OH-Gruppe oder (2) ein unterschiedlicher hepatischer Metabolismus der Thioflavinderivate bei Mensch und Pavian.

 
  • References

  • 1 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-III-R. American Psychiatric Publishing Inc; 1987
  • 2 Dewan MJ, Gupta S. Toward a definite diagnosis of Alzheimer's disease. Compr Psychiatry 1992; 33: 282-290.
  • 3 Glatting G, Landmann M, Kull T. et al. Internal radionuclide therapy: the ULMDOS software for treatment planning. Med Phys 2005; 32: 2399-2405.
  • 4 Glatting G, Landmann M, Wunderlich A. et al. Internal radionuclide therapy: A software for treatment planning using tomographic data. Nuklearmedizin 2006; 45: 269-272.
  • 5 Guidelines abstracted from the American Academy of Neurology's Dementia Guidelines for Early Detection, Diagnosis, and Management of Dementia. J Am Geriatr Soc 2003; 51: 869-873.
  • 6 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 2006; 13: 601-609.
  • 7 Jobst KA, Barnetson LP, Shepstone BJ. Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and APO E4 medial temporal lobe dementias. The Oxford Project to Investigate Memory and Aging. Int Psychogeriatr 1997; 9 (Suppl 1) 191-222.
  • 8 Klunk WE, Engler H, Nordberg A. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306-319.
  • 9 Loevinger R, Budinger TF, Watson EE. MIRD Primer for Absorbed Dose Calculation. Reston, VA: Society of Nuclear Medicine; 1991
  • 10 Lopresti BJ, Klunk WE, Mathis CA. et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46: 1959-1972.
  • 11 Mathis CA, Wang Y, Holt DP. et al. Synthesis and evaluation of 11C-labeled6-substituted2-arylben- zothiazoles as amyloid imaging agents. J Med Chem 2003; 46: 2740-2754.
  • 12 McKhann G, Drachman D, Folstein M. et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-944.
  • 13 Neumaier B, Mottaghy FM, Deisenhofer S. et al. Radiosynthesis and evaluation of [N-methyl-nC]2-(4'-(methylamino)phenyl)-ben- zothiazole ("C-BTA-1) and [N-methyl-nC]2-(3'- methyl-4-(methylamino)phenyl)-benzothiazole (nC-3'-Me-BTA-1) as potential radiotracers for in vivo imaging of amyloid plaques with positron emission tomography. Nuklearmedizin. 2007 46. in press.
  • 14 Parsey RV, Sokol LO, Belanger MJ. et al. Amyloid plaque imaging agent [C-11]-6-OH-BTA-1: biodistribution and radiation dosimetry in baboon. Nucl Med Commun 2005; 26: 875-880.
  • 15 Price JC, Klunk WE, Lopresti BJ. et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547.
  • 16 Ravaglia G, Forti P, Maioli F. et al. Incidence and etiology of dementia in a large elderly Italian population. Neurology 2005; 64: 1525-1530.
  • 17 Solbach C, Uebele M, Reischl G. et al. Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T derivatives using [11C]methyl triflate for beta-amyloid imaging in Alzheimer's Disease with PET. Appl Radiat Isot 2005; 62: 591-595.
  • 18 Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys 2003; 85: 294-310.
  • 19 Stabin MG, Sparks RB, Crowe E. OLINDA/ EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005; 46: 1023-1027.