Thromb Haemost 2017; 117(11): 2079-2091
DOI: 10.1160/TH17-04-0241
Cellular Haemostasis and Platelets
Schattauer GmbH Stuttgart

Down Regulation of the Munc18b-syntaxin-11 Complex and β1-tubulin Impairs Secretion and Spreading in Neonatal Platelets

Eva Caparrós-Pérez
,
Raúl Teruel-Montoya
,
Verónica Palma-Barquero
,
José M. Torregrosa
,
José E. Blanco
,
Juan L. Delgado
,
María L. Lozano
,
Vicente Vicente
,
Martha Sola-Visner
,
José Rivera
,
Constantino Martínez*
,
Francisca Ferrer-Marín*
Further Information

Publication History

06 April 2017

10 August 2017

Publication Date:
30 November 2017 (online)

Abstract

Neonatal platelets are hyporeactive and show impaired agonist-induced secretion despite no obvious abnormalities in their granules. Here, we examined, for the first time, the ultrastructure of neonatal and adult platelets following agonist activation. Under resting conditions, neonatal and adult platelets appeared ultrastructurally identical. Following agonist stimulation, however, noticeable degranulation occurred in adult platelets, while granules in neonatal platelets remained clearly visible and apparently unable to centralize or fuse. To investigate the underlying mechanisms, we first examined the expression levels of the main SNARE proteins, which mediate the membrane fusion events required for exocytosis. Neonatal platelets showed significantly reduced levels of syntaxin-11 and its regulator, Munc18b. Since granule centralization depends on contraction of the microtubule ring, we also examined the expression of its main component, β1-tubulin. Noteworthy, we found decreased TUBB1 mRNA and protein levels in neonatal platelets, while TUBB2A and TUBB isoforms were overexpressed, partially compensating for that deficiency. Finally, supporting the functional consequences of defective exocytosis, adhesion kinetic assays, performed in plasma-free medium, demonstrated delayed adhesion and spreading of neonatal platelets. This is the first report showing marked reductions of syntaxin-11–Munc18b complex and β1-tubulin in neonatal platelets, indicating that these proteins, required for platelet degranulation, are developmentally regulated.

Supplementary Material

 
  • References

  • 1 Haley KM, Recht M, McCarty OJ. Neonatal platelets: mediators of primary hemostasis in the developing hemostatic system. Pediatr Res 2014; 76 (03) 230-237
  • 2 Ferrer-Marin F, Stanworth S, Josephson C, Sola-Visner M. Distinct differences in platelet production and function between neonates and adults: implications for platelet transfusion practice. Transfusion 2013; 53 (11) 2814-2821 , quiz 2813
  • 3 Sola-Visner M. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact of therapies. Hematology (Am Soc Hematol Educ Program) 2012; 2012: 506-511
  • 4 Ts'ao CH, Green D, Schultz K. Function and ultrastructure of platelets of neonates: enhanced ristocetin aggregation of neonatal platelets. Br J Haematol 1976; 32 (02) 225-233
  • 5 Suarez CR, Gonzalez J, Menendez C, Fareed J, Fresco R, Walenga J. Neonatal and maternal platelets: activation at time of birth. Am J Hematol 1988; 29 (01) 18-21
  • 6 Saving KL, Jennings DE, Aldag JC, Caughey RC. Platelet ultrastructure of high-risk premature infants. Thromb Res 1994; 73 (06) 371-384
  • 7 Urban D, Pluthero FG, Christensen H. , et al. Decreased numbers of dense granules in fetal and neonatal platelets. Haematologica 2017; 102 (02) e36-e38
  • 8 Israels SJ, Daniels M, McMillan EM. Deficient collagen-induced activation in the newborn platelet. Pediatr Res 1990; 27 (4, Pt 1): 337-343
  • 9 Israels SJ, Cheang T, Roberston C, McMillan-Ward EM, McNicol A. Impaired signal transduction in neonatal platelets. Pediatr Res 1999; 45 (5, Pt 1): 687-691
  • 10 Marks MS. SNARing platelet granule secretion. Blood 2012; 120 (12) 2355-2357
  • 11 Golebiewska EM, Poole AW. Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms?. Br J Haematol 2013; 165: 204-216
  • 12 Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 1998; 95 (26) 15781-15786
  • 13 Jahn R, Scheller RH. SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 2006; 7 (09) 631-643
  • 14 Ren Q, Barber HK, Crawford GL. , et al. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 2007; 18 (01) 24-33
  • 15 Ye S, Karim ZA, Al Hawas R, Pessin JE, Filipovich AH, Whiteheart SW. Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood 2012; 120 (12) 2484-2492
  • 16 Chen D, Bernstein AM, Lemons PP, Whiteheart SW. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood 2000; 95 (03) 921-929
  • 17 Peters CG, Michelson AD, Flaumenhaft R. Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood 2012; 120 (01) 199-206
  • 18 Koseoglu S, Peters CG, Fitch-Tewfik JL. , et al. VAMP-7 links granule exocytosis to actin reorganization during platelet activation. Blood 2015; 126 (05) 651-660
  • 19 Gerrard JM, Docherty JC, Israels SJ. , et al. A reassessment of the bleeding time: association of age, hematocrit, platelet function, von Willebrand factor, and bleeding time thromboxane B2 with the length of the bleeding time. Clin Invest Med 1989; 12 (03) 165-171
  • 20 Katz JA, Moake JL, McPherson PD. , et al. Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma. Blood 1989; 73 (07) 1851-1858
  • 21 Linder N, Shenkman B, Levin E. , et al. Deposition of whole blood platelets on extracellular matrix under flow conditions in preterm infants. Arch Dis Child Fetal Neonatal Ed 2002; 86 (02) F127-F130
  • 22 Finkelstein Y, Shenkman B, Sirota L. , et al. Whole blood platelet deposition on extracellular matrix under flow conditions in preterm neonatal sepsis. Eur J Pediatr 2002; 161 (05) 270-274
  • 23 Horbar JD, Badger GJ, Carpenter JH. , et al; Members of the Vermont Oxford Network. Trends in mortality and morbidity for very low birth weight infants, 1991-1999. Pediatrics 2002; 110 (1, Pt 1): 143-151
  • 24 Navarro-Núñez L, Teruel R, Antón AI. , et al. Rare homozygous status of P43 β1-tubulin polymorphism causes alterations in platelet ultrastructure. Thromb Haemost 2011; 105 (05) 855-863
  • 25 Rajasekhar D, Kestin AS, Bednarek FJ, Ellis PA, Barnard MR, Michelson AD. Neonatal platelets are less reactive than adult platelets to physiological agonists in whole blood. Thromb Haemost 1994; 72 (06) 957-963
  • 26 Mankin P, Maragos J, Akhand M, Saving KL. Imparied platelet--dense granule release in neonates. J Pediatr Hematol Oncol 2000; 22 (02) 143-147
  • 27 Al Hawas R, Ren Q, Ye S, Karim ZA, Filipovich AH, Whiteheart SW. Munc18b/STXBP2 is required for platelet secretion. Blood 2012; 120 (12) 2493-2500
  • 28 White JG, Burris SM. Morphometry of platelet internal contraction. Am J Pathol 1984; 115 (03) 412-417
  • 29 Escolar G, Sauk J, Bravo ML, Krumwiede M, White JG. Immunogold staining of microtubules in resting and activated platelets. Am J Hematol 1987; 24 (02) 177-188
  • 30 Freson K, De Vos R, Wittevrongel C. , et al. The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 2005; 106 (07) 2356-2362
  • 31 Gelman B, Setty BN, Chen D, Amin-Hanjani S, Stuart MJ. Impaired mobilization of intracellular calcium in neonatal platelets. Pediatr Res 1996; 39 (4, Pt 1): 692-696
  • 32 Sandrock K, Nakamura L, Vraetz T, Beutel K, Ehl S, Zieger B. Platelet secretion defect in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL-5). Blood 2010; 116 (26) 6148-6150
  • 33 Raslova H, Kauffmann A, Sekkaï D. , et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood 2007; 109 (08) 3225-3234
  • 34 Schwer HD, Lecine P, Tiwari S, Italiano Jr JE, Hartwig JH, Shivdasani RA. A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 2001; 11 (08) 579-586
  • 35 Italiano Jr JE, Bergmeier W, Tiwari S. , et al. Mechanisms and implications of platelet discoid shape. Blood 2003; 101 (12) 4789-4796
  • 36 Bluteau O, Langlois T, Rivera-Munoz P. , et al. Developmental changes in human megakaryopoiesis. J Thromb Haemost 2013; 11 (09) 1730-1741
  • 37 Mattia G, Vulcano F, Milazzo L. , et al. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 2002; 99 (03) 888-897
  • 38 Liu ZJ, Italiano Jr J, Ferrer-Marin F. , et al. Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood 2011; 117 (15) 4106-4117
  • 39 Navarro-Núñez L, Lozano ML, Rivera J. , et al. The association of the beta1-tubulin Q43P polymorphism with intracerebral hemorrhage in men. Haematologica 2007; 92 (04) 513-518
  • 40 Baker-Groberg SM, Lattimore S, Recht M, McCarty OJ, Haley KM. Assessment of neonatal platelet adhesion, activation, and aggregation. J Thromb Haemost 2016; 14 (04) 815-827
  • 41 Shenkman B, Linder N, Savion N. , et al. Increased neonatal platelet deposition on subendothelium under flow conditions: the role of plasma von Willebrand factor. Pediatr Res 1999; 45 (02) 270-275
  • 42 Weinstein MJ, Blanchard R, Moake JL, Vosburgh E, Moise K. Fetal and neonatal von Willebrand factor (vWF) is unusually large and similar to the vWF in patients with thrombotic thrombocytopenic purpura. Br J Haematol 1989; 72 (01) 68-72
  • 43 Wiedmeier SE, Henry E, Sola-Visner MC, Christensen RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009; 29 (02) 130-136
  • 44 Ferrer-Marin F, Chavda C, Lampa M, Michelson AD, Frelinger III AL, Sola-Visner M. Effects of in vitro adult platelet transfusions on neonatal hemostasis. J Thromb Haemost 2011; 9 (05) 1020-1028
  • 45 Sitaru AG, Holzhauer S, Speer CP. , et al. Neonatal platelets from cord blood and peripheral blood. Platelets 2005; 16 (3–4): 203-210
  • 46 Saxonhouse MA, Garner R, Mammel L. , et al. Closure times measured by the platelet function analyzer PFA-100 are longer in neonatal blood compared to cord blood samples. Neonatology 2010; 97 (03) 242-249