Thromb Haemost 2007; 97(01): 88-98
DOI: 10.1160/TH06-06-0315
Endothelium and Vascular Development
Schattauer GmbH

Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: A novel antioxidative mechanism

Vany Nascimento-Silva*
1   Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
,
Maria Augusta Arruda*
1   Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
,
Christina Barja-Fidalgo
1   Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
,
Iolanda M. Fierro
1   Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
› Author Affiliations
Financial support: This study was supported by the Universidade do Estado do Rio de Janeiro (UERJ/SR-2), Fundação Carlos Chagas de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Further Information

Publication History

Received 07 June 2006

Accepted after resubmission 20 October 2006

Publication Date:
28 November 2017 (online)

Summary

Lipoxins and their aspirin-triggered carbon-15 epimers have emerged as mediators of key events in endogenous anti-inflammation and resolution. However, the implication of these novel lipid mediators on cardiovascular diseases such as hypertension, atherosclerosis, and heart failure has not been investigated. One of the major features shared by these pathological conditions is the increased production of reactive oxygen species (ROS) generated by vascular NAD(P)H oxidase activation. In this study, we have examined whether an aspirin-triggered lipoxin A4 analog (ATL-1) modulates ROS generation in endothelial cells (EC). Pre-treatment of EC with ATL-1 (1–100 nM) completely blocked ROS production triggered by different agents, as assessed by dihydrorhodamine 123 and hydroethidine. Furthermore, ATL-1 inhibited the phosphorylation and translocation of the cytosplamic NAD(P)H oxidase subunit p47phox to the cell membrane as well as NAD(P)H oxidase activity. Western blot and immunofluorescence microscopy analyses showed that ATL-1 (100 nM) impaired the redox-sensitive activation of the transcriptional factor NF-κB, a critical step in several events associated to vascular pathologies. These results demonstrate that ATL-1 suppresses NAD(P)H oxidase-mediated ROS generation in EC, strongly indicating that lipoxins may play a protective role against the development and progression of cardiovascular diseases.

* These authors contributed equally to this work.


 
  • References

  • 1 Serhan CN. Lipoxin and aspirin-triggered 15-epilipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 141-62.
  • 2 Clària J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci USA 1995; 92: 9475-9.
  • 3 Chiang N, Bermudez EA, Ridker PM. et al Aspirin triggers anti-inflammatory 15-epi-lipoxin A 4 and inhibits thromboxane in a randomized human trial. Proc Natl Acad Sci USA 2004; 101: 15178-83.
  • 4 Takano T, Fiore S, Maddox JF. et al Aspirin-triggered 15-epi-lipoxin A 4 (LXA 4 ) and LXA 4 stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J Exp Med 1997; 185: 1693-704.
  • 5 Simões R, Fierro IM. Involvement of the Rho-kinase/ myosin light chain kinase pathway on human monocyte chemotaxis induced by ATL-1, an aspirintriggered lipoxin A 4 synthetic analog. J Immunol 2005; 175: 1843-50.
  • 6 Serhan CN, Maddox JF, Petasis NA. et al Design of lipoxin A 4 stable analogs that block transmigration and adhesion of human PMN. Biochemistry 1995; 34: 14609-15.
  • 7 Bannenberg G, Moussignac R, Gronert K. et al Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration. Br J Pharmacol 2004; 143: 43-52.
  • 8 Guilford WJ, Bauman JG, Skuballa W. et al Novel 3-oxa lipoxin A 4 analogues with enhanced chemical and metabolic stability have anti-inflammatory activity in vivo. J Med Chem 2004; 47: 2157-65.
  • 9 Chiang N, Arita M, Serhan CN. Anti-inflammatory circuitry: lipoxin. Aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 163-77.
  • 10 Serhan CN. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol 2004; 122: 305-21.
  • 11 Gangemi S, Pescara L, D’Urbano E. et al Aging is characterized by a profound reduction in anti-inflammatory lipoxin A 4 levels. Exp Gerontol 2005; 40: 612-4.
  • 12 Cai H, Griendling K, Harrison G. The vascular NAD(P)H oxidase as therapeutic targets in cardiovascular diseases. Trends in Pharmacol Sci 2003; 24: 471-8.
  • 13 Griendling KK. Novel NAD(P)H oxidases in the cardiovascular system. Heart 2004; 90: 491-3.
  • 14 Griendling KK, Sorescu D, Lassègue B. et al Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000; 20: 2175-83.
  • 15 Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004; 122: 339-52.
  • 16 Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002; 90: 251-62.
  • 17 Nascimento-Silva V, Arruda MA, Barja-Fidalgo C. et al Novel lipid mediator aspirin-triggered lipoxin A 4 induces heme oxygenase-1 on endothelial cells. Am J Physiol Cell Physiol 2005; 289: C557-63.
  • 18 Cezar-de-Mello PFT, Nascimento-Silva V, Villela CG. et al Aspirin-triggered lipoxin A 4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene 2005; 25: 122-9.
  • 19 Petasis NA, Akritopoulou-Zanze I, Fokin VV. et al Design, synthesis and bioactions of novel stable mimetics of lipoxins and aspirin-triggered lipoxins. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 301-21.
  • 20 Parkinson JF. Lipoxin and synthetic lipoxin analogs: an overview of anti-inflammatory functions and new concepts in immunomodulation. Inflamm Allergy Drug Targets 2006; 5: 91-106.
  • 21 Jaffe EA, Nachman RL, Becker CG. et al Culture of human endothelial cell derived from umbilical veins: identification by morphological criteria. J Clin Invest 1973; 52: 2745-56.
  • 22 Galbusera M, Buelli S, Gastoldi S. et al Activation of porcine endothelium in response to xenogeneic serum causes thrombosis independently of platelet activation. Xenotransplantation 2005; 12: 110-20.
  • 23 Carter WO, Narayanan PK, Robinson JP. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 1994; 55: 253-8.
  • 24 Garcia-Abreu J, Mendes FA, Onofre GR. et al Contribution of heparan sulfate to the non-permissive role of the midline glia to the growth of midbrain neuritis. Glia 2000; 29: 260-72.
  • 25 Krotz F, de Wit C, Sohn HY. et al Magnetofection-a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003; 7: 700-10.
  • 26 Coelho AL, De Freitas MS, Mariano-Oliveira A. et al Interaction of disintegrins with human neutrophils induces cytoskeleton reorganization, focal adhesion kinase activation, and extracellular-regulated kinase-2 nuclear translocation, interfering with the chemotactic function. FASEB J 2001; 15: 1643-5.
  • 27 Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285: R277-97.
  • 28 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494-501.
  • 29 Fiore S, Reyom SW, Weller PF. et al Lipoxin recognition sites. Specific binding of labeled lipoxin A 4 with human neutrophils. J Biol Chem 1992; 267: 16168-76.
  • 30 Gavins FN, Yona S, Kamal AM. et al Leukocyte antiadhesive actions of annexin 1: ALXR-and FPR-related anti-inflammatory mechanisms. Blood 2003; 101: 4140-7.
  • 31 Li JM, Shah AM. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 2002; 277: 19952-60.
  • 32 Barnes PJ, Karin M. Nuclear factor-? B: a pivotal transcription factor in chronic inflammatory diseases. N Eng J Med 1997; 336: 1066-71.
  • 33 Fierro IM, Serhan CN. Mechanisms in anti-inflammation and resolution: the role of lipoxins and aspirin-triggered lipoxins. Braz J Med Biol Res 2001; 34: 555-66.
  • 34 Shen J, Herderick E, Cornhill JF. et al Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest 1996; 98: 2201-8.
  • 35 Shimbo D, Chaplin W, Crossman D. et al Role of depression and inflammation in incident coronary heart disease events. Am J Cardiol 2005; 96: 1016-21.
  • 36 Gonzalez ER. Antiplatelet therapy in atherosclerotic cardiovascular disease. Clin Ther 1998; 20 (Suppl B) B18-41.
  • 37 Dragomir E, Manduteanu I, Voinea M. et al Aspirin rectifies calcium homeostasis, decreases reactive oxygen species, and increases NO production in high glucose-exposed human endothelial cells. J Diabetes Complications 2004; 18: 289-99.
  • 38 Levy BD, Petasis NA, Serhan CN. Polyisoprenyl phosphates in intracellular signalling. Nature 1997; 389: 985-90.
  • 39 Chang TC, Huang CJ, Tam K. et al Stabilization of hypoxia-inducible factor-1 a by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells. J Biol Chem 2005; 280: 36567-74.
  • 40 Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys 2002; 397: 342-4.
  • 41 Decoursey TE, Ligeti E. Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 2005; 62: 2173-93.
  • 42 Paul-Clark MJ, Van Cao T, Moradi-Bidhendi N. et al 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J Exp Med 2004; 200: 69-78.
  • 43 Kalinowski L, Malinski T. Endothelial NADH/ NADPH-dependent enzymatic sources of superoxide production: relationship to endothelial dysfunction. Acta Biochimica Polonica 2004; 51: 459-69.
  • 44 Schroeder H. New signaling routes for an old drug: lipoxin A 4 might mediate heme oxygenase-1 induction by aspirin. Focus on „Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells". Am J Physiol Cell Physiol 2005; 289: C507-8.