Zusammenfassung
Ziel: Der Anstieg der Hirngewebetemperatur bei transkraniellen Ultraschallanwendungen (US)
ist als mögliche Gefahr für den Patienten beschrieben worden. Hierfür liegen jedoch
keine Studien am Menschen, sondern lediglich an verschiedenen Modellen vor. Der Effekt
des trankraniellen Duplex-Ultraschalls bei der Routineuntersuchung auf die intraventrikuläre
Temperatur bei Patienten wurde untersucht. Material und Methoden: Patienten, die eine intrakranielle Druck- und Temperatursonde implantiert hatten
und US untersucht wurden, werden eingeschlossen. In einer Untersuchungsserie (B-mode-,
B- und Color-mode-, B- und Color-mode-plus-Doppler; jeweils für drei Minuten) wird
der intrakranielle Thermistor der Messsonde fokussiert, während die intraventrikuläre
Temperatur und die Körpertemperatur kontinuierlich (über Blasenkatheter oder rektal)
gemessen werden. Die Temperaturänderungen werden analysiert. Ergebnisse: Bei 14 Patienten wurden 31 US durchgeführt. Für die Auswertung wurden 26 US bei 9
Patienten, bei denen die Temperatursonde dargestellt werden konnte, berücksichtigt.
Die initialen Körpertemperaturen lagen zwischen 35,1 bis 38,7 °C. Es wurden keine
signifikanten Temperaturänderungen während der ersten (B-mode), zweiten (B- und color)
und dritten (b- und color plus Doppler) US gesehen. Der T-Test zeigte eine konstante
Temperatur während der US (zweiseitige Signifikanz: 1,000; 1,000; 0,0731). Schlussfolgerung: Der transkranielle Routine-US erhöht die Hirntemperatur der Patienten nicht.
Abstract
Purpose: The effect of transcranial duplex ultrasound (US) on the intraventricular temperature
in patients was analyzed. Temperature increases during examination have been identified
as a potential risk factor but only data from model studies is currently available.
Materials and Methods: Patients who had an intracranial pressure/temperature transducer implanted and underwent
US assessment were included. In an examination series (B-mode, combined B- and color
mode, combined B- and color mode plus Doppler, 3 min for each mode), the intracranial
thermodilution thermistor was focused while intraventricular temperature and body
temperature (bladder catheter or rectal probe) were recorded continuously and temperature
changes were analyzed. Results: Thirty-one US examinations were performed in 14 patients. Twenty-six examinations
in 9 patients in which the intracranial temperature probe was depicted were included.
Initial patient temperatures ranged from 35.1dgC to 38.7dgC. No significant increase
or decrease in intracranial temperature was seen after the first (B-mode), second
(B- and color mode) and third (B- and color mode plus Doppler) duplex US examination.
T-test for paired samples showed a constant temperature throughout US examination
(two-sided significance: 1.000, 1.000, 0.731). Conclusion: Routine transcranial duplex ultrasound does not increase the intracranial temperature
in patients.
Key words
ultrasonography - doppler - transcranial - safety
References
- 1
Barnett S B, Maulik D.
Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications.
J Matern Fetal Med.
2001;
10
75-84
- 2
Whittingham T A.
WFUMB Safety Symposium on Echo-Contrast Agents: exposure from diagnostic ultrasound
equipment relating to cavitation risk.
Ultrasound Med Biol.
2007;
33
214-223
- 3
Barnett S B.
Intracranial temperature elevation from diagnostic ultrasound.
Ultrasound Med Biol.
2001;
27
883-888
- 4
Whittingham T A.
Estimated fetal cerebral ultrasound exposures from clinical examinations.
Ultrasound Med Biol.
2001;
27
877-82
- 5
Ziskin M C, Barnett S B.
Ultrasound and the developing central nervous system.
Ultrasound Med Biol.
2001;
27
875-6
- 6
Barnett S B, ter Haar G R, Ziskin M C. et al .
Current status of research on biophysical effects of ultrasound.
Ultrasound Med Biol.
1994;
20
205-218
- 7
Connor C W, Hynynen K.
Patterns of thermal deposition in the skull during transcranial focused ultrasound
surgery.
IEEE Trans Biomed Eng.
2004;
51
1693-1706
- 8
Wu J, Cubberley F, Gormley G. et al .
Temperature rise generated by diagnostic ultrasound in a transcranial phantom.
Ultrasound Med Biol.
1995;
21
561-568
- 9
Sekoranja L, Loulidi J, Yilmaz H. et al .
Intravenous versus combined (intravenous and intra-arterial) thrombolysis in acute
ischemic stroke: a transcranial color-coded duplex sonography – guided pilot study.
Stroke.
2006;
37
1805-1809
- 10
Schneider F, Gerriets T, Walberer M. et al .
Brain edema and intracerebral necrosis caused by transcranial low-frequency 20-kHz
ultrasound: a safety study in rats.
Stroke.
2006;
37
1301-1306
- 11
Molina C A.
Monitoring and imaging the clot during systemic thrombolysis in stroke patients.
Expert Rev Cardiovasc Ther.
2007;
5
91-98
- 12
Martini S R, Hill M D, Alexandrov A V. et al .
Outcome in hyperglycemic stroke with ultrasound-augmented thrombolytic therapy.
Neurology.
2006;
67
700-702
- 13
Molina C A, Ribo M, Rubiera M. et al .
Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound
monitoring in stroke patients treated with intravenous tissue plasminogen activator.
Stroke.
2006;
37
425-429
- 14
Eggers J.
Acute stroke: therapeutic transcranial color duplex sonography.
Front Neurol Neurosci.
2006;
21
162-170
- 15
Demchuk A M, Saqqur M, Alexandrov A V.
Transcranial Doppler in acute stroke.
Neuroimaging Clin N Am.
2005;
15
473-480, ix
- 16
Sakharov D V, Hekkenberg R T, Rijken D C.
Acceleration of fibrinolysis by high-frequency ultrasound: the contribution of acoustic
streaming and temperature rise.
Thromb Res.
2000;
100
333-340
- 17
Alexandrov A V, Molina C A, Grotta J C. et al .
Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke.
N Engl J Med.
2004;
351
2170-2178
- 18
Eggers J, Seidel G, Koch B. et al .
Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA Ultrasound-enhanced
systemic thrombolysis for acute ischemic stroke. Acceleration of fibrinolysis by high-frequency
ultrasound: the contribution of acoustic streaming and temperature rise.
Neurology.
2005;
64
1052-1054
- 19
Barnett S B.
Current status of safety of diagnostic ultrasound.
Hosp Med.
2001;
62
726-727
- 20
Nakagawa K, Ishibashi T, Matsushima M. et al .
Does long-term continuous transcranial Doppler monitoring require a pause for safer
use?.
Cerebrovasc Dis.
2007;
24
27-34
- 21
Rott H.
Clinical safety statement for diagnostic ultrasound. European Committee for Medical
Ultrasound Safety, Tours, France, March 1998.
Eur J Ultrasound.
1998;
8
67-68
- 22
Krejza J, Weigele J B, Alokaili R. et al .
Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA.
Neurology.
2006;
66
154-155; author reply 154 – 155
- 23
WFUMB Symposium on Safety and Standardisation in Medical Ultrasound .
Issues and Recommendations Regarding Thermal Mechanisms for Biological Effects of
Ultrasound. Hornbaek, Denmark, 30 August-1 September 1991.
Ultrasound Med Biol.
1992;
18
731-810
- 24
Duggan P M, Murcott M F, McPhee A J. et al .
The influence of variations in blood flow on pulsed doppler ultrasonic heating of
the cerebral cortex of the neonatal pig.
Ultrasound Med Biol.
2000;
26
647-654
- 25
Horder M M, Barnett S B, Vella G J. et al .
Ultrasound-induced temperature increase in the guinea-pig fetal brain in vitro.
Ultrasound Med Biol.
1998;
24
697-704
- 26
Horder M M, Barnett S B, Vella G J. et al .
Ultrasound-induced temperature increase in guinea-pig fetal brain in utero: third-trimester
gestation.
Ultrasound Med Biol.
1998;
24
1501-1510
- 27
Horder M M, Barnett S B, Vella G J. et al .
In vivo heating of the guinea-pig fetal brain by pulsed ultrasound and estimates of
thermal index.
Ultrasound Med Biol.
1998;
24
1467-1474
- 28
Horder M M, Barnett S B, Vella G J. et al .
Effects of pulsed ultrasound on sphenoid bone temperature and the heart rate in guinea-pig
foetuses.
Early Hum Dev.
1998;
52
221-233
- 29
Mariak Z, Krejza J, Swiercz M. et al .
Human brain temperature in vivo: lack of heating during color transcranial Doppler
ultrasonography.
J Neuroimaging.
2001;
11
308-312
- 30
Marshall I, Karaszewski B, Wardlaw J M. et al .
Measurement of regional brain temperature using proton spectroscopic imaging: validation
and application to acute ischemic stroke.
Magn Reson Imaging.
2006;
24
699-706
- 31
Karaszewski B, Wardlaw J M, Marshall I. et al .
Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic
stroke.
Ann Neurol.
2006;
60
438-446
- 32
Senneville B D, Mougenot de C, Quesson B. et al .
MR thermometry for monitoring tumor ablation.
Eur Radiol.
2007;
17
2401-2410
- 33
Vimeux F C, De Zwart J A, Palussiere J. et al .
Real-time control of focused ultrasound heating based on rapid MR thermometry.
Invest Radiol.
1999;
34
190-193
- 34
Pernot M, Aubry J F, Tanter M. et al .
High power transcranial beam steering for ultrasonic brain therapy.
Phys Med Biol.
2003;
48
2577-2589
- 35
Moonen C T.
Spatio-temporal control of gene expression and cancer treatment using magnetic resonance
imaging-guided focused ultrasound.
Clin Cancer Res.
2007;
13
3482-3489
- 36
Hynynen K.
Focused ultrasound for blood-brain disruption and delivery of therapeutic molecules
into the brain.
Expert Opin Drug Deliv.
2007;
4
27-35
Dr. Hans-Georg Schlosser
Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum
(CVK)
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/30/4 50 56 07 34
Fax: ++ 49/30/4 50 56 09 19
Email: hans-georg.schlosser@charite.de