Subscribe to RSS
DOI: 10.1055/s-2007-984505
Tebbe’s Reagent
Publication History
Publication Date:
25 June 2007 (online)
Biographical Sketches
Introduction
Tebbe’s reagent (1) is an organometallic compound and has found diverse applications in organic synthesis such as methylenation of carbonyl compounds, [1] synthesis of C-glycosides, [2] 1,6-disaccharides [3] and in the synthesis of intermediates, for example vinyl silanes [4] and allenylketenes. [5] It is readily prepared by reacting titanocene dichloride and trimethylaluminum in toluene at r.t. (Scheme 1). [1] When Tebbe’s reagent is treated with a Lewis base, for example pyridine or THF, a highly reactive titanocene methylidene is generated. It methylenates a range of carboxylic and carbonic acid derivatives, presumably via oxatitanacyclobutane to furnish alkenes in a short period of time at room temperature and below. [6]
Scheme 1
Abstracts
(A) Compounds containing carbonyl groups such as aldehydes, ketones, amides, esters, and thiolactones can be methylenated by using Tebbe’s reagent. [1] |
|
(B) Selective methylenation of aldehydes and ketones in the presence of an ester or amide group can be achieved using Tebbe’s reagent. [7a] This regioselectivity is also found in the methylenation of a methyl ester in the presence of a bulky silyl ester group. [7b] |
|
(C) An easy and effective synthesis of enantiomerically pure β-amino ketones and γ-amino alcohols can be achieved by Tebbe methylenation of proline derivatives. [8] |
|
(D) Cyclic enol ether 3 is easily synthesized from olefinic ester 2 by using two equivalents of Tebbe reagent. [9] |
|
(E) C-glycosides [10] can be readily prepared from 3-hydroxyl glycal esters via Tebbe methylenation and subsequent Claisen rearrangement. [2] 1,6-Linked C-disaccharides can also be prepared by Tebbe’s reagent and Claisen rearrangement. [3] |
|
(F) Since 1,2-cis glycosides are difficult to prepare, Tebbe methylenation with N-iodosuccinimide has been used as intramolecular aglycon delivery to synthesize these. [11] |
|
(G) Vinyl silanes play an important role as vinyl anion equivalents for stereospecific electrophilic reactions. They can be readily prepared with the help of Tebbe’s reagent. [4] |
|
(H) Allenyl ketene is synthesized from cyclobutenedione by Tebbe methylenation. [5] The allenyl ketene can then undergo different nucleophilic and electrophilic additions and cycloaddition reactions. |
|
(I) Sulfoxides, selenoxides, and pyridinium N-oxides can be converted into sulfides, selenides, and 2-methyl pyridines, respectively, on treatment with Tebbe’s reagent. [12] |
|
-
1a
Tebbe FN.Parshall GW.Reddy GS. J. Am. Chem. Soc. 1978, 100: 3611 -
1b
Pine SH.Zahler R.Evans DA.Grubbs RH. J. Am. Chem. Soc. 1980, 102: 3270 -
2a
Godage HY.Fairbanks AJ. Tetrahedron Lett. 2000, 41: 7589 -
2b
Godage HY.Fairbanks AJ. Tetrahedron Lett. 2003, 44: 3631 - 3
Chambers DJ.Evans GR.Fairbanks AJ. Tetrahedron 2005, 61: 7184 - 4
Kwan ML.Yeung CW.Breno KL.Doxsee KM. Tetrahedron Lett. 2001, 42: 1411 - 5
Huang W.Tidwell TT. Synthesis 2000, 457 - 6 For a review, see:
Hartley RC.McKiernan GJ. J. Chem. Soc., Perkin Trans. 1 2002, 2763 -
7a
Göres M.Winterfeldt E. J. Chem. Soc., Perkin. Trans. 1 1994, 3525 -
7b
Müller M.Lamottke K.Löw E.Magor-Veenstra E.Steglich W. J. Chem. Soc., Perkin. Trans. 1 2000, 2483 - 8
Silva MJ.Cottier L.Srivastava RM.Sinou D. J. Braz. Chem. Soc. 2005, 16: 995 - 9
Nicolaou KC.Postema MHD.Claiborne CF. J. Am. Chem. Soc. 1996, 118: 1565 - 10
Waldscheck B.Streiff M.Notz W.Kinzy W.Schmidt RR. Angew. Chem. Int. Ed. 2001, 40: 4007 - 11
Ennis SC.Fairbanks AJ.Slinn CA.Tennant-Eyles RJ.Yeates HS. Tetrahedron 2001, 57: 4221 - 12
Nicolaou KC.Koumbis AE.Snyder SA.Simonsen KB. Angew. Chem. Int. Ed. 2000, 39: 2529
References
-
1a
Tebbe FN.Parshall GW.Reddy GS. J. Am. Chem. Soc. 1978, 100: 3611 -
1b
Pine SH.Zahler R.Evans DA.Grubbs RH. J. Am. Chem. Soc. 1980, 102: 3270 -
2a
Godage HY.Fairbanks AJ. Tetrahedron Lett. 2000, 41: 7589 -
2b
Godage HY.Fairbanks AJ. Tetrahedron Lett. 2003, 44: 3631 - 3
Chambers DJ.Evans GR.Fairbanks AJ. Tetrahedron 2005, 61: 7184 - 4
Kwan ML.Yeung CW.Breno KL.Doxsee KM. Tetrahedron Lett. 2001, 42: 1411 - 5
Huang W.Tidwell TT. Synthesis 2000, 457 - 6 For a review, see:
Hartley RC.McKiernan GJ. J. Chem. Soc., Perkin Trans. 1 2002, 2763 -
7a
Göres M.Winterfeldt E. J. Chem. Soc., Perkin. Trans. 1 1994, 3525 -
7b
Müller M.Lamottke K.Löw E.Magor-Veenstra E.Steglich W. J. Chem. Soc., Perkin. Trans. 1 2000, 2483 - 8
Silva MJ.Cottier L.Srivastava RM.Sinou D. J. Braz. Chem. Soc. 2005, 16: 995 - 9
Nicolaou KC.Postema MHD.Claiborne CF. J. Am. Chem. Soc. 1996, 118: 1565 - 10
Waldscheck B.Streiff M.Notz W.Kinzy W.Schmidt RR. Angew. Chem. Int. Ed. 2001, 40: 4007 - 11
Ennis SC.Fairbanks AJ.Slinn CA.Tennant-Eyles RJ.Yeates HS. Tetrahedron 2001, 57: 4221 - 12
Nicolaou KC.Koumbis AE.Snyder SA.Simonsen KB. Angew. Chem. Int. Ed. 2000, 39: 2529
References
Scheme 1