ABSTRACT
An up-to-date review of the genetic aspects of idiopathic hypogonadotropic hypogonadism
(IHH)/Kallmann syndrome (KS) is presented. Because proper development of the neuroendocrine
axis must occur for normal puberty and reproductive function, gonadotropin-releasing
hormone (GnRH) neuron migration is outlined first, followed by an introduction to
the in vitro analysis of GnRH neuron migration. The normal hypothalamic-pituitary-gonadal
(HPG) axis at different ages is discussed, along with a brief overview of normal and
delayed puberty in both boys and girls. The phenotype of IHH/KS is discussed in detail,
with its relation to Mendelian inheritance and chromosomal translocations. The molecular
basis of IHH/KS is reviewed, with particular emphasis on the three most common genes
(KAL1, FGFR1 , and GNRHR ) that possess mutations in these patients. However, all other known genes for which
mutations occur are also addressed briefly. The goal of this review is to provide
a comprehensive discussion of IHH/KS, and to include both basic science and clinical
findings that should allow a more complete understanding of hypothalamic-pituitary
neuroendocrinology that is important in puberty and reproduction.
KEYWORDS
Hypogonadism - puberty - genetics
REFERENCES
1
Wierman M E, Pawlowski J E, Allen M P, Xu M, Linseman D A, Nielsen-Preiss S.
Molecular mechanisms of gonadotropin-releasing hormone neuronal migration.
Trends Endocrinol Metab.
2004;
15(3)
96-102
2
Mellon P L, Windle J J, Goldsmith P C, Padula C A, Roberts J L, Weiner R I.
Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis.
Neuron.
1990;
5(1)
1-10
3
Radovick S, Wray S, Lee E et al..
Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice.
Proc Natl Acad Sci USA.
1991;
88(8)
3402-3406
4
Grumbach M M.
A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant.
J Clin Endocrinol Metab.
2005;
90(5)
3122-3127
5
Layman L C, Reindollar R H.
The diagnosis and treatment of pubertal disorders.
Adolesc Med.
1994;
5
37-55
6
Reindollar R H, Byrd J R, McDonough P G.
Delayed sexual development: study of 252 patients.
Am J Obstet Gynecol.
1981;
140
371-380
7
Crowley Jr W F, Filicori M, Spratt D I, Santoro N F.
The physiology of gonadotropin-releasing hormone (GnRH) secretion in men and women.
Recent Prog Horm Res.
1985;
41
473-531
8
Burris A S, Rodbard H W, Winters S J, Sherins R J.
Gonadotropin therapy in men with isolated hypogonadotropic hypogonadism: the response
to human chorionic gonadotropin is predicted by initial testicular size.
J Clin Endocrinol Metab.
1988;
66
1144-1151
9
Waldstreicher J, Seminara S B, Jameson J L et al..
The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency
in the human.
J Clin Endocrinol Metab.
1996;
81(12)
4388-4395
10
Quinton R, Duke V M, Robertson A et al..
Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic
characterization.
Clin Endocrinol (Oxf).
2001;
55(2)
163-174
11
Bhagavath B, Podolsky R H, Ozata M et al..
Clinical and molecular characterization of a large sample of patients with hypogonadotropic
hypogonadism.
Fertil Steril.
2006;
85(3)
706-713
12
Franco B, Guioli S, Pragliola A et al..
A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and
axonal path-finding molecules.
Nature.
1991;
353
529-536
13
Legouis R, Hardelin J, Levilliers J et al..
The candidate gene for the X-linked Kallmann syndrome encodes a protein related to
adhesion molecules.
Cell.
1991;
67
423-435
14
Bick D, Franco B, Sherins R S et al..
Intragenic deletion of the KALIG-1 gene in Kallmann's syndrome.
N Engl J Med.
1992;
326
1752-1755
15
Hardelin J P, Levilliers J, Blanchard S et al..
Heterogeneity in the mutations responsible for X chromosome-linked Kallmann syndrome.
Hum Mol Genet.
1993;
2(4)
373-377
16
MacColl G, Quinton R, Bouloux P M.
GnRH neuronal development: insights into hypogonadotrophic hypogonadism.
Trends Endocrinol Metab.
2002;
13(3)
112-118
17
Lutz B, Karatani S, Rugarli E I et al..
Expression of the Kallmann syndrome gene in human fetal brain and in the manipulated
chick embryo.
Hum Mol Genet.
1994;
3(10)
1717-1723
18
Soussi-Yanicostas N, de Castro F, Julliard A K, Perfettini I, Chedotal A, Petit C.
Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch
formation from olfactory bulb output neurons.
Cell.
2002;
109(2)
217-228
19
MacColl G, Bouloux P, Quinton R.
Kallmann syndrome: adhesion, afferents, and anosmia.
Neuron.
2002;
34(5)
675-678
20
Schwanzel-Fukuda M, Crossin K L, Pfaff D W, Bouloux P M, Hardelin J P, Petit C.
Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos.
J Comp Neurol.
1996;
366(3)
547-557
21
Cariboni A, Pimpinelli F, Colamarino S et al..
The product of X-linked Kallmann's syndrome gene (KAL1) affects the migratory activity
of gonadotropin-releasing hormone (GnRH)-producing neurons.
Hum Mol Genet.
2004;
13(22)
2781-2791
22
Whitlock K E, Illing N, Brideau N J, Smith K M, Twomey S.
Development of GnRH cells: Setting the stage for puberty.
Mol Cell Endocrinol.
2006;
254
39-50
23
Loidi L, Castro-Feijoo L, Barreiro J et al..
Kallmann's syndrome with a novel missense mutation in the KAL1 gene that modifies
the major cell adhesion site of the anosmin-1 protein.
J Pediatr Endocrinol Metab.
2005;
18(6)
545-548
24
Albuisson J, Pecheux C, Carel J C et al..
Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2).
Hum Mutat.
2005;
25(1)
98-99
25
Sato N, Katsumata N, Kagami M et al..
Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast
growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients.
J Clin Endocrinol Metab.
2004;
89(3)
1079-1088
26
Massin N, Pecheux C, Eloit C et al..
X chromosome-linked Kallmann syndrome: clinical heterogeneity in three siblings carrying
an intragenic deletion of the KAL-1 gene.
J Clin Endocrinol Metab.
2003;
88(5)
2003-2008
27
Beranova M, Oliveira L M, Bedecarrats G Y et al..
Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing
hormone receptor mutations in idiopathic hypogonadotropic hypogonadism.
J Clin Endocrinol Metab.
2001;
86(4)
1580-1588
28
Izumi Y, Tatsumi K, Okamoto S et al..
Analysis of the KAL1 gene in 19 Japanese patients with Kallmann syndrome.
Endocr J.
2001;
48(2)
143-149
29
Jansen C, Hendriks-Stegeman B I, Jansen M.
A novel nonsense mutation of the KAL gene in two brothers with Kallmann syndrome.
Horm Res.
2000;
53(4)
207-212
30
Matsuo T, Okamoto S, Izumi Y et al..
A novel mutation of the KAL1 gene in monozygotic twins with Kallmann syndrome.
Eur J Endocrinol.
2000;
143(6)
783-787
31
Hou J W, Tsai W Y, Wang T R.
Detection of KAL-1 gene deletion with fluorescence in situ hybridization.
J Formos Med Assoc.
1999;
98(6)
448-451
32
Izumi Y, Tatsumi K, Okamoto S et al..
A novel mutation of the KAL1 gene in Kallmann syndrome.
Endocr J.
1999;
46(5)
651-658
33
O'Neill M J, Tridjaja B, Smith M J, Bell K M, Warne G L, Sinclair A H.
Familial Kallmann syndrome: a novel splice acceptor mutation in the KAL gene.
Hum Mutat.
1998;
11(4)
340-342
34
Gu W X, Colquhoun-Kerr J S, Kopp P, Bode H H, Jameson J L.
A novel aminoterminal mutation in the KAL-1 gene in a large pedigree with X-linked
Kallmann syndrome.
Mol Genet Metab.
1998;
65(1)
59-61
35
Georgopoulos N A, Pralong F P, Seidman C E, Seidman J G, Crowley Jr W F, Vallejo M.
Genetic heterogeneity evidenced by low incidence of KAL-1 gene mutations in sporadic
cases of gonadotropin-releasing hormone deficiency.
J Clin Endocrinol Metab.
1997;
82(1)
213-217
36
Hardelin J P, Petit C.
A molecular approach to the pathophysiology of the X chromosome-linked Kallmann's
syndrome.
Baillieres Clin Endocrinol Metab.
1995;
9(3)
489-507
37
Parenti G, Rizzolo M G, Ghezzi M et al..
Variable penetrance of hypogonadism in a sibship with Kallmann syndrome due to a deletion
of the KAL gene.
Am J Med Genet.
1995;
57(3)
476-478
38
Hardelin J P, Levilliers J, Young J et al..
Xp22.3 deletions in isolated familial Kallmann's syndrome.
J Clin Endocrinol Metab.
1993;
76(4)
827-831
39
Hardelin J P, Levilliers J, del Castillo I et al..
X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene.
Proc Natl Acad Sci USA.
1992;
89(17)
8190-8194
40
Bhagavath B, Xu N, Ozata M et al..
KAL1 mutations are not a common cause of idiopathic hypogonadotropic hypogonadism
in humans.
Mol Hum Reprod.
2007;
13
165-170
41
Dode C, Levilliers J, Dupont J M et al..
Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome.
Nat Genet.
2003;
33(4)
463-465
42
Pitteloud N, Acierno Jr J S, Meysing A U, Dwyer A A, Hayes F J, Crowley Jr W F.
Reversible Kallmann syndrome, delayed puberty, and isolated anosmia occurring in a
single family with a mutation in the fibroblast growth factor receptor 1 gene.
J Clin Endocrinol Metab.
2005;
90(3)
1317-1322
43
Sato N, Hasegawa T, Hori N, Fukami M, Yoshimura Y, Ogata T.
Gonadotrophin therapy in Kallmann syndrome caused by heterozygous mutations of the
gene for fibroblast growth factor receptor 1: report of three families: case report.
Hum Reprod.
2005;
20(8)
2173-2178
44
Sato N, Ohyama K, Fukami M, Okada M, Ogata T.
Kallmann syndrome: somatic and germline mutations of the fibroblast growth factor
receptor 1 gene in a mother and the son.
J Clin Endocrinol Metab.
2006;
91(4)
1415-1418
45
Pitteloud N, Acierno Jr J S, Meysing A et al..
Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and
normosmic idiopathic hypogonadotropic hypogonadism.
Proc Natl Acad Sci USA.
2006;
103(16)
6281-6286
46
Pitteloud N, Meysing A, Quinton R et al..
Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide
spectrum of reproductive phenotypes.
Mol Cell Endocrinol.
2006;
254-255
60-69
47
Gill J C, Moenter S M, Tsai P S.
Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth
factor signaling.
Endocrinology.
2004;
145(8)
3830-3839
48
Tsai P S, Moenter S M, Postigo H R et al..
Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor
in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the
size of GnRH neuronal population.
Mol Endocrinol.
2005;
19(1)
225-236
49
White K E, Cabral J M, Davis S I et al..
Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone
elongation.
Am J Hum Genet.
2005;
76(2)
361-367
50
Hurley M E, White M J, Green A J, Kelleher J.
Antley-Bixler syndrome with radioulnar synostosis.
Pediatr Radiol.
2004;
34(2)
148-151
51
Kress W, Petersen B, Collmann H, Grimm T.
An unusual FGFR1 mutation (fibroblast growth factor receptor 1 mutation) in a girl
with non-syndromic trigonocephaly.
Cytogenet Cell Genet.
2000;
91(1-4)
138-140
52
Muenke M, Schell U, Hehr A et al..
A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome.
Nat Genet.
1994;
8(3)
269-274
53
Bhagavath B, Ozata M, Ozdemir I C et al..
The prevalence of gonadotropin-releasing hormone receptor mutations in a large cohort
of patients with hypogonadotropic hypogonadism.
Fertil Steril.
2005;
84(4)
951-957
54
Layman L C, Cohen D P, Jin M et al..
Mutations in the gonadotropin-releasing hormone receptor gene cause hypogonadotropic
hypogonadism.
Nat Genet.
1998;
18(1)
14-15
55
de Roux N, Young J, Misrahi M et al..
A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing
hormone receptor.
N Engl J Med.
1997;
337(22)
1597-1602
56
de Roux N, Young J, Brailly-Tabard S, Misrahi M, Milgrom E, Chaison G.
The same molecular defects of the gonadotropin-releasing hormone determine a variable
degree of hypogonadism in affected kindred.
J Clin Endocrinol Metab.
1999;
84(2)
567-572
57
Pralong F P, Gomez F, Castillo E et al..
Complete hypogonadotropic hypogonadism associated with a novel inactivating mutation
of the gonadotropin-releasing hormone receptor.
J Clin Endocrinol Metab.
1999;
84(10)
3811-3816
58
Kottler M L, Chauvin S, Lahlou N et al..
A new compound heterozygous mutation of the gonadotropin-releasing hormone receptor
(L314X, Q106R) in a woman with complete hypogonadotropic hypogonadism: chronic estrogen
administration amplifies the gonadotropin defect.
J Clin Endocrinol Metab.
2000;
85(9)
3002-3008
59
Seminara S B, Beranova M, Oliveira L M, Martin K A, Crowley Jr W F, Hall J E.
Successful use of pulsatile gonadotropin-releasing hormone (GnRH) for ovulation induction
and pregnancy in a patient with GnRH receptor mutations.
J Clin Endocrinol Metab.
2000;
85(2)
556-562
60
Layman L C, McDonough P G, Cohen D P, Maddox M, Tho S P, Reindollar R H.
Familial gonadotropin-releasing hormone resistance and hypogonadotropic hypogonadism
in a family with multiple affected individuals.
Fertil Steril.
2001;
75(6)
1148-1155
61
Costa E M, Bedecarrats G Y, Mendonca B B, Arnhold I J, Kaiser U B, Latronico A C.
Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian
patients with hypogonadotropic hypogonadism and normal olfaction.
J Clin Endocrinol Metab.
2001;
86(6)
2680-2686
62
Layman L C, Cohen D P, Xie J, Smith G D.
Clinical phenotype and infertility treatment in a male with hypogonadotropic hypogonadism
due to mutations Ala129Asp/Arg262Gln of the gonadotropin-releasing hormone receptor.
Fertil Steril.
2002;
78(6)
1317-1320
63
Dewailly D, Boucher A, Decanter C, Lagarde J P, Counis R, Kottler M L.
Spontaneous pregnancy in a patient who was homozygous for the Q106R mutation in the
gonadotropin-releasing hormone receptor gene.
Fertil Steril.
2002;
77(6)
1288-1291
64
Maya-Nunez G, Janovick J A, Ulloa-Aguirre A, Soderlund D, Conn P M, Mendez J P.
Molecular basis of hypogonadotropic hypogonadism: restoration of mutant (E(90)K) GnRH
receptor function by a deletion at a distant site.
J Clin Endocrinol Metab.
2002;
87(5)
2144-2149
65
Silveira L F, Stewart P M, Thomas M, Clark D A, Bouloux P M, MacColl G S.
Novel homozygous splice acceptor site GnRH receptor (GnRHR) mutation: human GnRHR
“knockout.”
J Clin Endocrinol Metab.
2002;
87(6)
2973-2977
66
Bedecarrats G Y, Linher K D, Janovick J A et al..
Four naturally occurring mutations in the human GnRH receptor affect ligand binding
and receptor function.
Mol Cell Endocrinol.
2003;
205(1-2)
51-64
67
Wolczynski S, Laudanski P, Jarzabek K, Mittre H, Lagarde J P, Kottler M L.
A case of complete hypogonadotropic hypogonadism with a mutation in the gonadotropin-releasing
hormone receptor gene.
Fertil Steril.
2003;
79(2)
442-444
68
Bedecarrats G Y, Linher K D, Kaiser U B.
Two common naturally occurring mutations in the human gonadotropin-releasing hormone
(GnRH) receptor have differential effects on gonadotropin gene expression and on GnRH-mediated
signal transduction.
J Clin Endocrinol Metab.
2003;
88(2)
834-843
69
Karges B, Karges W, Mine M et al..
Mutation Ala(171)Thr stabilizes the gonadotropin-releasing hormone receptor in its
inactive conformation, causing familial hypogonadotropic hypogonadism.
J Clin Endocrinol Metab.
2003;
88(4)
1873-1879
70
Meysing A U, Kanasaki H, Bedecarrats G Y et al..
GNRHR mutations in a woman with idiopathic hypogonadotropic hypogonadism highlight
the differential sensitivity of luteinizing hormone and follicle-stimulating hormone
to gonadotropin-releasing hormone.
J Clin Endocrinol Metab.
2004;
89(7)
3189-3198
71
Brothers S P, Cornea A, Janovick J A, Conn P M.
Human loss-of-function gonadotropin-releasing hormone receptor mutants retain wild-type
receptors in the endoplasmic reticulum: molecular basis of the dominant-negative effect.
Mol Endocrinol.
2004;
18(7)
1787-1797
72
Lee J H, Miele M E, Hicks D J et al..
KiSS-1, a novel human malignant melanoma metastasis-suppressor gene.
J Natl Cancer Inst.
1996;
88(23)
1731-1737
73
Simonian S X, Spratt D P, Herbison A E.
Identification and characterization of estrogen receptor alpha-containing neurons
projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the
rostral preoptic area of the rat.
J Comp Neurol.
1999;
411(2)
346-358
74
Kotani M, Detheux M, Vandenbogaerde A et al..
The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of
the orphan G protein-coupled receptor GPR54.
J Biol Chem.
2001;
276(37)
34631-34636
75
Ohtaki T, Shintani Y, Honda S et al..
Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.
Nature.
2001;
411(6837)
613-617
76
Muir A I, Chamberlain L, Elshourbagy N A et al..
AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1.
J Biol Chem.
2001;
276(31)
28969-28975
77
Messager S, Chatzidaki E E, Ma D et al..
Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled
receptor 54.
Proc Natl Acad Sci USA.
2005;
102(5)
1761-1766
78
Irwig M S, Fraley G S, Smith J T et al..
Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of
KiSS-1 mRNA in the male rat.
Neuroendocrinology.
2004;
80(4)
264-272
79
Parhar I S, Ogawa S, Sakuma Y.
Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone
types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid
fish.
Endocrinology.
2004;
145(8)
3613-3618
80
Plant T M, Ramaswamy S, Dipietro M J.
Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous
pulses of kisspeptin in the juvenile monkey (Macaca mulatta ) elicits a sustained train of gonadotropin-releasing hormone discharges.
Endocrinology.
2006;
147(2)
1007-1013
81
Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T.
Peripheral administration of metastin induces marked gonadotropin release and ovulation
in the rat.
Biochem Biophys Res Commun.
2004;
320(2)
383-388
82
Dhillo W S, Chaudhri O B, Patterson M et al..
Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males.
J Clin Endocrinol Metab.
2005;
90(12)
6609-6615
83
Smith J T, Dungan H M, Stoll E A et al..
Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of
the male mouse.
Endocrinology.
2005;
146(7)
2976-2984
84
Smith J T, Cunningham M J, Rissman E F, Clifton D K, Steiner R A.
Regulation of Kiss1 gene expression in the brain of the female mouse.
Endocrinology.
2005;
146(9)
3686-3692
85
Seminara S B, Messager S, Chatzidaki E E et al..
The GPR54 gene as a regulator of puberty.
N Engl J Med.
2003;
349(17)
1614-1627
86
de Roux N, Genin E, Carel J C, Matsuda F, Chaussain J L, Milgrom E.
Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide
receptor GPR54.
Proc Natl Acad Sci USA.
2003;
100(19)
10972-10976
87
Pallais J C, Bo-Abbas Y, Pitteloud N, Crowley Jr W F, Seminara S B.
Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH
and mutations in the G-protein coupled receptor, GPR54.
Mol Cell Endocrinol.
2006;
254-255
70-77
88
Licinio J, Mantzoros C, Negrao A B et al..
Human leptin levels are pulsatile and inversely related to pituitary-adrenal function.
Nat Med.
1997;
3(5)
575-579
89
Smith J T, Acohido B V, Clifton D K, Steiner R A.
KiSS-1 neurones are direct targets for leptin in the ob/ob mouse.
J Neuroendocrinol.
2006;
18(4)
298-303
90
Welt C K, Chan J L, Bullen J et al..
Recombinant human leptin in women with hypothalamic amenorrhea.
N Engl J Med.
2004;
351(10)
987-997
91
Vaisse C, Halaas J L, Horvath C M, Darnell Jr J E, Stoffel M, Friedman J M.
Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not
db/db mice.
Nat Genet.
1996;
14(1)
95-97
92
Lubrano-Berthelier C, Le Stunff C, Bougneres P, Vaisse C.
A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans.
J Clin Endocrinol Metab.
2004;
89(5)
2028-2032
93
Strobel A, Issad T, Camoin L, Ozata M, Strosberg A D.
A leptin missense mutation associated with hypogonadism and morbid obesity.
Nat Genet.
1998;
18
213-215
94
Montague C T, Farooqi S, Whitehead F P et al..
Congenital leptin deficiency is associated with severe early-onset obesity in humans.
Nature.
1997;
387
903-908
95
Clement K, Vaisse C, Lahlou N et al..
A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.
Nature.
1998;
392
398-401
96
Licinio J, Caglayan S, Ozata M et al..
Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism,
and behavior in leptin-deficient adults.
Proc Natl Acad Sci USA.
2004;
101(13)
4531-4536
97
Ozata M, Ozdemir I C, Licinio J.
Human leptin deficiency caused by a missense mutation: multiple endocrine defects,
decreased sympathetic tone, and immune system dysfunction indicate new targets for
leptin action, greater central than peripheral resistance to the effects of leptin,
and spontaneous correction of leptin-mediated defects.
J Clin Endocrinol Metab.
1999;
84(10)
3686-3695
98
Muscatelli F, Strom T M, Walker A P et al..
Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita
and hypogonadotropic hypogonadism.
Nature.
1994;
372
672-676
99
Zanaria E, Muscatelli F, Bardoni B et al..
An unusual member of the nuclear hormone receptor superfamily responsible for X-linked
adrenal hypoplasia congenita.
Nature.
1994;
372
635-641
100
Guo W, Mason J S, Stone C G et al..
Diagnosis of X-linked adrenal hypoplasia congenita by mutation analysis of the DAX1
gene.
JAMA.
1995;
274(4)
324-330
101
Zhang Y-H, Guo W, Wagner R L et al..
DAX1 mutations provide insight into structure-function relationships in steroidogenic
tissue development.
Am J Hum Genet.
1998;
62
855-864
102
Merke D P, Tajima T, Baron J, Cutler G B.
Hypogonadotropic hypogonadism in a female caused by an X-linked recessive mutation
in the DAX1 gene.
N Engl J Med.
1999;
340(16)
1248-1252
103
Seminara S B, Achermann J C, Genel M, Jameson J L, Crowley Jr W F.
X-linked adrenal hypoplasia congenita: a mutation in DAX1 expands the phenotypic spectrum
in males and females.
J Clin Endocrinol Metab.
1999;
84(12)
4501-4509
104
Achermann J C, Gu W X, Kotlar T J et al..
Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal
delay.
J Clin Endocrinol Metab.
1999;
84(12)
4497-4500
105
Mantovani G, Ozisik G, Achermann J C et al..
Hypogonadotropic hypogonadism as a presenting feature of late-onset x-linked adrenal
hypoplasia congenita.
J Clin Endocrinol Metab.
2002;
87(1)
44-48
106
Tabarin A, Achermann J C, Recan D et al..
A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and incomplete
hypogonadotropic hypogonadism.
J Clin Invest.
2000;
105(3)
321-328
107
Habiby R L, Boepple P, Nachtigall L, Sluss P M, Crowley Jr W F, Jameson J L.
Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1
mutations lead to combined hypothalmic and pituitary defects in gonadotropin production.
J Clin Invest.
1996;
98
1055-1062
108
Caron P, Imbeaud S, Bennet A, Plantavid M, Camerino G, Rochiccioli P.
Combined hypothalamic-pituitary-gonadal defect in a hypogonadic man with a novel mutation
in the DAX-1 gene.
J Clin Endocrinol Metab.
1999;
84(10)
3563-3569
109
Achermann J C, Silverman B L, Habiby R L, Jameson J L.
Presymptomatic diagnosis of X-linked adrenal hypoplasia congenita by analysis of DAX1.
J Pediatr.
2000;
137(6)
878-881
110
Wiltshire E, Couper J, Rodda C, Jameson J L, Achermann J C.
Variable presentation of X-linked adrenal hypoplasia congenita.
J Pediatr Endocrinol Metab.
2001;
14(8)
1093-1096
111
Achermann J C, Ito M, Silverman B L et al..
Missense mutations cluster within the carboxyl-terminal region of DAX-1 and impair
transcriptional repression.
J Clin Endocrinol Metab.
2001;
86(7)
3171-3175
112
Salvi R, Gomez F, Fiaux M et al..
Progressive onset of adrenal insufficiency and hypogonadism of pituitary origin caused
by a complex genetic rearrangement within DAX-1.
J Clin Endocrinol Metab.
2002;
87(9)
4094-4100
113
Ozisik G, Mantovani G, Achermann J C et al..
An alternate translation initiation site circumvents an amino-terminal DAX1 nonsense
mutation leading to a mild form of X-linked adrenal hypoplasia congenita.
J Clin Endocrinol Metab.
2003;
88(1)
417-423
114
Lin L, Gu W X, Ozisik G et al..
Analysis of DAX1 (NR0B1) and steroidogenic factor-1 (NR5A1) in children and adults
with primary adrenal failure: ten years' experience.
J Clin Endocrinol Metab.
2006;
91(8)
3048-3054
115
Achermann J C.
The role of SF1/DAX1 in adrenal and reproductive function.
Ann Endocrinol (Paris).
2005;
66(3)
233-239
116
Yu R N, Ito M, Saunders T L, Camper S A, Jameson J L.
Role of Ahch in gonadal development and gametogenesis.
Nat Genet.
1998;
20
353-357
117
Jackson R S, Creemers J W, Ohagi S et al..
Obesity and impaired prohormone processing associated with mutations in the human
prohormone convertase 1 gene.
Nat Genet.
1997;
16(3)
303-306
118
O'Rahilly S, Gray H, Humphreys P J et al..
Brief report: impaired processing of prohormones associated with abnormalities of
glucose homeostasis and adrenal function.
N Engl J Med.
1995;
333(21)
1386-1390
119
Jackson R S, Creemers J W, Farooqi I S et al..
Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein
convertase 1 deficiency.
J Clin Invest.
2003;
112(10)
1550-1560
120
Dattani M T, Martinez-Barbera J-P, Thomas P Q et al..
Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in
human and mouse.
Nat Genet.
1998;
19
125-133
121
Thomas P Q, Dattani M T, Brickman J M et al..
Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia
and septo-optic dysplasia.
Hum Mol Genet.
2001;
10
39-45
122
Brickman J M, Clements M, Tyrell R et al..
Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary
disorders.
Development.
2001;
128(24)
5189-5199
123
Thomas P Q, Dattani M T, Brickman J M et al..
Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia
and septo-optic dysplasia.
Hum Mol Genet.
2001;
10(1)
39-45
124
Quirk J, Brown P.
Hesx1 homeodomain protein represses transcription as a monomer and antagonises transactivation
of specific sites as a homodimer.
J Mol Endocrinol.
2002;
28(3)
193-205
125
Kim S S, Kim Y, Shin Y L, Kim G H, Kim T U, Yoo H W.
Clinical characteristics and molecular analysis of PIT1, PROP1, LHX3, and HESX1 in
combined pituitary hormone deficiency patients with abnormal pituitary MR imaging.
Horm Res.
2003;
60(6)
277-283
126
Carvalho L R, Woods K S, Mendonca B B et al..
A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to
impaired repressor-corepressor interaction.
J Clin Invest.
2003;
112(8)
1192-1201
127
Cohen R N, Cohen L E, Botero D et al..
Enhanced repression by HESX1 as a cause of hypopituitarism and septooptic dysplasia.
J Clin Endocrinol Metab.
2003;
88(10)
4832-4839
128
Reynaud R, Gueydan M, Saveanu A et al..
Genetic screening of combined pituitary hormone deficiency: experience in 195 patients.
J Clin Endocrinol Metab.
2006;
91(9)
3329-3336
129
Fluck C, Deladoey J, Rutishauser K et al..
Phenotypic variability in familial combined pituitary hormone deficiency caused by
a PROP1 gene mutation resulting in the substitution of Arg to Cys at codon 120 (R120C).
J Clin Endocrinol Metab.
1998;
83
3727-3734
130
Cogan J D, Wu W, Phillips J AI et al..
The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency.
J Clin Endocrinol Metab.
1998;
83
3346-3349
131
Wu W, Cogan J D, Pfaffle R W et al..
Mutations in PROP1 cause familial combined pituitary hormone deficiency.
Nat Genet.
1998;
18
147-149
132
Arroyo A, Pernasetti F, Vasilyev V V, Amato P, Yen S S, Mellon P L.
A unique case of combined pituitary hormone deficiency caused by a PROP1 gene mutation
(R120C) associated with normal height and absent puberty.
Clin Endocrinol (Oxf).
2002;
57(2)
283-291
133
Park J K, Ozata M, Chorich L P et al..
Analysis of the PROP1 gene in a large cohort of patients with idiopathic hypogonadotropic
hypogonadism.
Clin Endocrinol (Oxf).
2004;
60(1)
147-149
134
Andersen B, Pearse II R V, Jenne K et al..
The Ames dwarf gene is required for Pit-1 gene activation.
Dev Biol.
1995;
172(2)
495-503
135
Netchine I, Sobrier M L, Krude H et al..
Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone
deficiency.
Nat Genet.
2000;
25(2)
182-186
136
Sloop K W, Parker G E, Hanna K R, Wright H A, Rhodes S J.
LHX3 transcription factor mutations associated with combined pituitary hormone deficiency
impair the activation of pituitary target genes.
Gene.
2001;
265(1-2)
61-69
137
Machinis K, Pantel J, Netchine I et al..
Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4.
Am J Hum Genet.
2001;
69(5)
961-968
138
Layman L C, Edwards J L, Osborne W E et al..
Human chorionic gonadotropin-b sequences in women with disorders of HCG production.
Mol Hum Reprod.
1997;
3(4)
315-320
139
Weiss J, Adams E, Whitcomb R W, Crowley Jr W F, Jameson J L.
Normal sequence of the gonadotropin-releasing hormone gene in patients with idiopathic
hypgonadotropic hypogonadism.
Biol Reprod.
1991;
45
743-747
140
Valdes-Socin H, Salvi R, Daly A F et al..
Hypogonadism in a patient with a mutation in the luteinizing hormone beta-subunit
gene.
N Engl J Med.
2004;
351(25)
2619-2625
141
Layman L C, Lee E J, Peak D B et al..
Delayed puberty and hypogonadism caused by a mutation in the follicle stimulating
hormone β-subunit gene.
N Engl J Med.
1997;
337
607-611
142
Layman L C, Porto A L, Xie J et al..
FSH beta gene mutations in a female with partial breast development and a male sibling
with normal puberty and azoospermia.
J Clin Endocrinol Metab.
2002;
87(8)
3702-3707
143
Matthews C H, Borgato S, Beck-Peccoz P et al..
Primary amenorrhea and infertility due to a mutation in the β-subunit of follicle-stimulating
hormone.
Nat Genet.
1993;
5
83-86
144
Clark A D, Layman L C.
Analysis of the Cys82Arg mutation in follicle-stimulating hormone beta (FSHbeta) using
a novel FSH expression vector.
Fertil Steril.
2003;
79(2)
379-385
145
Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson P O, Chatterjee K.
Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A
syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia,
low FSH but high lutropin and normal serum testosterone concentrations.
Clin Chem Lab Med.
1998;
36(8)
663-665
146
Phillip M, Arbelle J E, Segev Y, Parvari R.
Male hypogonadism due to a mutation in the gene for the b-subunit of follicle stimulating
hormone.
N Engl J Med.
1998;
338(24)
1729-1732
147
Barnes R B, Namnoum A, Rosenfield R L, Layman L C.
Effects of follicle-stimulating hormone on ovarian androgen production in a woman
with isolated follicle-stimulating hormone deficiency.
N Engl J Med.
2000;
343(16)
1197-1198
148
Barnes R B, Namnoum A, Rosenfield R L, Layman L C.
The role of LH and FSH in ovarian androgen secretion and ovarian follicular development:
clinical studies in a patient with isolated FSH deficiency and multicystic ovaries.
Hum Reprod.
2002;
17
88-91
149
Pitteloud N, Boepple P A, DeCruz S, Valkenburgh S B, Crowley Jr W F, Hayes F J.
The fertile eunuch variant of idiopathic hypogonadotropic hypogonadism: spontaneous
reversal associated with a homozygous mutation in the gonadotropin-releasing hormone
receptor.
J Clin Endocrinol Metab.
2001;
86(6)
2470-2475
150
Caron P, Chauvin S, Christin-Maitre S et al..
Resistance of hypogonadotropic patients with mutated GnRH receptor genes to pulsatile
GnRH administration.
J Clin Endocrinol Metab.
1999;
84(3)
990-996
151
Lanfranco F, Gromoll J, von Eckardstein S, Herding E M, Nieschlag E, Simoni M.
Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54
gene in male idiopathic hypogonadotropic hypogonadism.
Eur J Endocrinol.
2005;
153(6)
845-852
152
Lin L, Conway G S, Hill N R, Dattani M T, Hindmarsh P C, Achermann J C.
A homozygous R262Q mutation in the gonadotropin-releasing hormone receptor presenting
as constitutional delay of growth and puberty with subsequent borderline oligospermia.
J Clin Endocrinol Metab.
2006;
91(12)
5117-5121
153
Soderlund D, Canto P, de la Chesnaye E, Ulloa-Aguirre A, Mendez J P.
A novel homozygous mutation in the second transmembrane domain of the gonadotrophin
releasing hormone receptor gene.
Clin Endocrinol (Oxf).
2001;
54(4)
493-498
154
Karges B, Karges W, de Roux N.
Clinical and molecular genetics of the human GnRH receptor.
Hum Reprod Update.
2003;
9(6)
523-530
155
Antelli A, Baldazzi L, Balsamo A et al..
Two novel GnRHR gene mutations in two siblings with hypogonadotropic hypogonadism.
Eur J Endocrinol.
2006;
155(2)
201-205
156
Vagenakis G A, Sgourou A, Papachatzopoulou A, Kourounis G, Papavassiliou A G, Georgopoulos N A.
The gonadotropin-releasing hormone (GnRH)-1 gene, the GnRH receptor gene, and their
promoters in patients with idiopathic hypogonadotropic hypogonadism with or without
resistance to GnRH action.
Fertil Steril.
2005;
84(6)
1762-1765
Lawrence C LaymanM.D.
Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics
& Gynecology
The Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3360
eMail: Llayman@mcg.edu