Semin Liver Dis 2007; 27(2): 194-213
DOI: 10.1055/s-2007-979471
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Liver: A Special Case in Transplantation Tolerance

Volker Benseler1 , 2 , Geoffrey W. McCaughan1 , Hans J. Schlitt2 , G. Alex Bishop3 , David G. Bowen4 , Patrick Bertolino1
  • 1Centenary Institute and AW Morrow Gastroenterology and Liver Centre, Sydney, Australia
  • 2Department of Surgery, University of Regensburg Medical Center, Regensburg, Germany
  • 3Collaborative Transplant Laboratory, Blackburn Building, Sydney University, Australia
  • 4Center for Vaccines and Immunity, Columbus Children's Research Institute, Columbus, Ohio
Further Information

Publication History

Publication Date:
22 May 2007 (online)

ABSTRACT

Liver transplants are not often rejected in patients weaned from immunosuppression and are spontaneously accepted in some animal models. We review past and recent findings of liver transplantation and propose a unified model in which several mechanisms act in concert to induce and maintain tolerance in both naïve and effector T cell compartments. First, passenger leukocytes migrate to lymphoid tissues and induce apoptosis of alloreactive naïve T cells. Second, antigen-specific activation and subsequent deletion of naïve and effector cells within the liver itself purge the repertoire of alloreactive T cells. Other mechanisms such as microchimerism and migration of donor dendritic cells to the thymus may play a predominant role in maintaining tolerance, and soluble major histocompatibility complex molecules, donor peptides, and regulatory T cells may participate in the induction and maintenance phases. Thus, the major challenge in liver transplantation will be to favor these tolerogenic processes while developing strategies that specifically inhibit alloreactive memory T cells.

REFERENCES

  • 1 Calne R Y, White D J, Thiru S et al.. Cyclosporin A in patients receiving renal allografts from cadaver donors.  Lancet. 1978;  2 1323-1327
  • 2 Calne R Y, Sells R A, Pena J R et al.. Induction of immunological tolerance by porcine liver allografts.  Nature. 1969;  223 472-476
  • 3 Kamada N. The immunology of experimental liver transplantation in the rat.  Immunology. 1985;  55 369-389
  • 4 Qian S, Demetris A J, Murase N et al.. Murine liver allograft transplantation: tolerance and donor cell chimerism.  Hepatology. 1994;  19 916-924
  • 5 Crispe I N, Giannandrea M, Klein I et al.. Cellular and molecular mechanisms of liver tolerance.  Immunol Rev. 2006;  213 101-118
  • 6 Adam R, Bismuth H, Diamond T et al.. Effect of extended cold ischaemia with UW solution on graft function after liver transplantation.  Lancet. 1992;  340 1373-1376
  • 7 Strasberg S M, Howard T K, Molmenti E P, Hertl M. Selecting the donor liver: risk factors for poor function after orthotopic liver transplantation.  Hepatology. 1994;  20 829-838
  • 8 Schemmer P, Schoonhoven R, Swenberg J A, Bunzendahl H, Thurman R G. Gentle in situ liver manipulation during organ harvest decreases survival after rat liver transplantation: role of Kupffer cells.  Transplantation. 1998;  65 1015-1020
  • 9 Teoh N C, Farrell G C. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection.  J Gastroenterol Hepatol. 2003;  18 891-902
  • 10 Banchereau J, Briere F, Caux C et al.. Immunobiology of dendritic cells.  Annu Rev Immunol. 2000;  18 767-811
  • 11 Ghobrial R M, Gornbein J, Steadman R et al.. Pretransplant model to predict posttransplant survival in liver transplant patients.  Ann Surg. 2002;  236 315-322
  • 12 Medzhitov R, Janeway Jr C A. Innate immunity: impact on the adaptive immune response.  Curr Opin Immunol. 1997;  9 4-9
  • 13 Medzhitov R, Janeway Jr C. Innate immunity.  N Engl J Med. 2000;  343 338-344
  • 14 Sumitran-Holgersson S. HLA-specific alloantibodies and renal graft outcome.  Nephrol Dial Transplant. 2001;  16 897-904
  • 15 Michaels P J, Fishbein M C, Colvin R B. Humoral rejection of human organ transplants.  Springer Semin Immunopathol. 2003;  25 119-140
  • 16 Medawar P B. The behavior and fate of skin autografts and skin homografts in rabbits.  J Anat. 1944;  78 176-199
  • 17 Bolton E M, Gracie J A, Briggs J D, Kampinga J, Bradley J A. Cellular requirements for renal allograft rejection in the athymic nude rat.  J Exp Med. 1989;  169 1931-1946
  • 18 Mackay C R, Marston W L, Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation.  J Exp Med. 1990;  171 801-817
  • 19 Lakkis F G, Arakelov A, Konieczny B T, Inoue Y. Immunologic “ignorance” of vascularized organ transplants in the absence of secondary lymphoid tissue.  Nat Med. 2000;  6 686-688
  • 20 Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance.  Annu Rev Immunol. 2004;  22 745-763
  • 21 Adams A B, Pearson T C, Larsen C P. Heterologous immunity: an overlooked barrier to tolerance.  Immunol Rev. 2003;  196 147-160
  • 22 Bingaman A W, Farber D L. Memory T cells in transplantation: generation, function, and potential role in rejection.  Am J Transplant. 2004;  4 846-852
  • 23 Thomson A W, Fairchild R L. The last 5 years of basic science investigation in transplant immunology.  Am J Transplant. 2006;  6 1768-1773
  • 24 Qian S, Fu F, Li Y et al.. Presensitization by skin grafting from major histocompatibility complex class I or major histocompatibility complex class II deficient mice identifies class I antigens as inducers of allosensitization.  Immunology. 1995;  85 82-87
  • 25 Ashwell J D, Chen C, Schwartz R H. High frequency and nonrandom distribution of alloreactivity in T cell clones selected for recognition of foreign antigen in association with self class II molecules.  J Immunol. 1986;  136 389-395
  • 26 Lindahl K F, Wilson D B. Histocompatibility antigen-activated cytotoxic T lymphocytes: I. Estimates of the absolute frequency of killer cells generated in vitro.  J Exp Med. 1977;  145 500-507
  • 27 Lindahl K F, Wilson D B. Histocompatibility antigen-activated cytotoxic T lymphocytes: II. Estimates of the frequency and specificity of precursors.  J Exp Med. 1977;  145 508-522
  • 28 Suchin E J, Langmuir P B, Palmer E et al.. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question.  J Immunol. 2001;  166 973-981
  • 29 Martinez O M, Rosen H R. Basic concepts in transplant immunology.  Liver Transpl. 2005;  11 370-381
  • 30 Heath W R, Belz G T, Behrens G M et al.. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens.  Immunol Rev. 2004;  199 9-26
  • 31 Limmer A, Ohl J, Kurts C et al.. Efficient presentation of exogenous antigen by liver endothelial cells to CD8 + T cells results in antigen-specific T-cell tolerance.  Nat Med. 2000;  6 1348-1354
  • 32 Gould D S, Auchincloss Jr H. Direct and indirect recognition: the role of MHC antigens in graft rejection.  Immunol Today. 1999;  20 77-82
  • 33 Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor.  Immunol Today. 1998;  19 395-404
  • 34 Liu Z, Sun Y K, Xi Y P et al.. Contribution of direct and indirect recognition pathways to T cell alloreactivity.  J Exp Med. 1993;  177 1643-1650
  • 35 Hornick P I, Mason P D, Baker R J et al.. Significant frequencies of T cells with indirect anti-donor specificity in heart graft recipients with chronic rejection.  Circulation. 2000;  101 2405-2410
  • 36 Lafferty K J, Bootes A, Dart G, Radovich G, Talmage D W. Is a specialized stimulator cell required for the induction of allograft immunity?.  Adv Exp Med Biol. 1976;  66 87-93
  • 37 Lechler R I, Batchelor J R. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells.  J Exp Med. 1982;  155 31-41
  • 38 Larsen C P, Morris P J, Austyn J M. Migration of dendritic leukocytes from cardiac allografts into host spleens: a novel pathway for initiation of rejection.  J Exp Med. 1990;  171 307-314
  • 39 Roake J A, Rao A S, Morris P J et al.. Systemic lipopolysaccharide recruits dendritic cell progenitors to nonlymphoid tissues.  Transplantation. 1995;  59 1319-1324
  • 40 Stegall M D, Tezuka K, Oluwole S F et al.. Interstitial class II-positive cell depletion by donor pretreatment with gamma irradiation: evidence of differential immunogenicity between vascularized cardiac allografts and islets.  Transplantation. 1990;  49 246-251
  • 41 Prop J, Nieuwenhuis P, Wildevuur C R. Lung allograft rejection in the rat: I. Accelerated rejection caused by graft lymphocytes.  Transplantation. 1985;  40 25-30
  • 42 Sun J, McCaughan G W, Gallagher N D, Sheil A G, Bishop G A. Deletion of spontaneous rat liver allograft acceptance by donor irradiation.  Transplantation. 1995;  60 233-236
  • 43 Opelz G, Wujciak T, Dohler B, Scherer S, Mytilineos J. HLA compatibility and organ transplant survival. Collaborative Transplant Study.  Rev Immunogenet. 1999;  1 334-342
  • 44 Selin L K, Brehm M A, Naumov Y N et al.. Memory of mice and men: CD8 + T-cell cross-reactivity and heterologous immunity.  Immunol Rev. 2006;  211 164-181
  • 45 Brehm M A, Markees T G, Daniels K A et al.. Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections.  J Immunol. 2003;  170 4077-4086
  • 46 Burrows S R, Khanna R, Burrows J M, Moss D J. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease.  J Exp Med. 1994;  179 1155-1161
  • 47 Lerner A, Yamada T, Miller R A. Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A.  Eur J Immunol. 1989;  19 977-982
  • 48 Serra H M, Krowka J F, Ledbetter J A, Pilarski L M. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event.  J Immunol. 1988;  140 1435-1441
  • 49 Brook M O, Wood K J, Jones N D. The impact of memory T cells on rejection and the induction of tolerance.  Transplantation. 2006;  82 1-9
  • 50 Taylor D K, Neujahr D, Turka L A. Heterologous immunity and homeostatic proliferation as barriers to tolerance.  Curr Opin Immunol. 2004;  16 558-564
  • 51 Valujskikh A. The challenge of inhibiting alloreactive T-cell memory.  Am J Transplant. 2006;  6 647-651
  • 52 Sugioka A, Morita M, Fujita J, Hasumi A, Shiroishi T. Graft acceptance and tolerance induction in mouse liver transplantation using wild mice.  Transplant Proc. 2001;  33 137-139
  • 53 Houssin D, Gigou M, Franco D et al.. Specific transplantation tolerance induced by spontaneously tolerated liver allograft in inbred strains of rats.  Transplantation. 1980;  29 418-419
  • 54 Kamada N, Brons G, Davies H S. Fully allogeneic liver grafting in rats induces a state of systemic nonreactivity to donor transplantation antigens.  Transplantation. 1980;  29 429-431
  • 55 Zimmermann F A, Davies H S, Knoll P P, Gokel J M, Schmidt T. Orthotopic liver allografts in the rat: the influence of strain combination on the fate of the graft.  Transplantation. 1984;  37 406-410
  • 56 Kamada N, Wight D G. Antigen-specific immunosuppression induced by liver transplantation in the rat.  Transplantation. 1984;  38 217-221
  • 57 Wang C, Sun J, Li L et al.. Conversion of pancreas allograft rejection to acceptance by liver transplantation.  Transplantation. 1998;  65 188-192
  • 58 Kamada N, Davies H S, Roser B. Reversal of transplantation immunity by liver grafting.  Nature. 1981;  292 840-842
  • 59 Perry I, Neuberger J. Immunosuppression: towards a logical approach in liver transplantation.  Clin Exp Immunol. 2005;  139 2-10
  • 60 Wiesner R H, Demetris A J, Belle S H et al.. Acute hepatic allograft rejection: incidence, risk factors, and impact on outcome.  Hepatology. 1998;  28 638-645
  • 61 Starzl T E, Demetris A J, Trucco M et al.. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance.  Hepatology. 1993;  17 1127-1152
  • 62 Lerut J, Sanchez-Fueyo A. An appraisal of tolerance in liver transplantation.  Am J Transplant. 2006;  6 1774-1780
  • 63 Mazariegos G V, Reyes J, Marino I R et al.. Weaning of immunosuppression in liver transplant recipients.  Transplantation. 1997;  63 243-249
  • 64 Takatsuki M, Uemoto S, Inomata Y et al.. Weaning of immunosuppression in living donor liver transplant recipients.  Transplantation. 2001;  72 449-454
  • 65 Tisone G, Orlando G, Cardillo A et al.. Complete weaning off immunosuppression in HCV liver transplant recipients is feasible and favourably impacts on the progression of disease recurrence.  J Hepatol. 2006;  44 702-709
  • 66 Lang M, Kahl A, Bechstein W et al.. Combined liver-kidney transplantation: long-term follow up in 18 patients.  Transpl Int. 1998;  11(suppl 1) S155-S159
  • 67 Morrissey P E, Gordon F, Shaffer D et al.. Combined liver-kidney transplantation in patients with cirrhosis and renal failure: effect of a positive cross-match and benefits of combined transplantation.  Liver Transpl Surg. 1998;  4 363-369
  • 68 Rasmussen A, Davies H F, Jamieson N V, Evans D B, Calne R Y. Combined transplantation of liver and kidney from the same donor protects the kidney from rejection and improves kidney graft survival.  Transplantation. 1995;  59 919-921
  • 69 Kotru A, Sheperd R, Nadler M et al.. Combined lung and liver transplantation: the United States experience.  Transplantation. 2006;  82 144-145
  • 70 Jugie M, Canioni D, Le Bihan C et al.. Study of the impact of liver transplantation on the outcome of intestinal grafts in children.  Transplantation. 2006;  81 992-997
  • 71 Evrard V, Otte J B, Sokal E et al.. Impact of surgical and immunological parameters in pediatric liver transplantation: a multivariate analysis in 500 consecutive recipients of primary grafts.  Ann Surg. 2004;  239 272-280
  • 72 Heffron T, Welch D, Pillen T et al.. Successful ABO-incompatible pediatric liver transplantation utilizing standard immunosuppression with selective postoperative plasmapheresis.  Liver Transpl. 2006;  12 972-978
  • 73 Gugenheim J, Samuel D, Reynes M, Bismuth H. Liver transplantation across ABO blood group barriers.  Lancet. 1990;  336 519-523
  • 74 Manez R, Kelly R H, Kobayashi M et al.. Immunoglobulin G lymphocytotoxic antibodies in clinical liver transplantation: studies toward further defining their significance.  Hepatology. 1995;  21 1345-1352
  • 75 Bastani B. Selective disappearance of donor-specific antibodies and absence of acute rejection after liver transplantation in a patient with a strongly positive lymphocyte crossmatch.  Arch Iran Med. 2006;  9 163-164
  • 76 Mosconi G, Scolari M P, Feliciangeli G et al.. Combined liver-kidney transplantation with preformed anti-HLA antibodies: a case report.  Transplant Proc. 2006;  38 1125-1126
  • 77 Navarro V, Herrine S, Katopes C, Colombe B, Spain C V. The effect of HLA class I (A and B) and class II (DR) compatibility on liver transplantation outcomes: an analysis of the OPTN database.  Liver Transpl. 2006;  12 652-658
  • 78 Kasahara M, Kiuchi T, Uryuhara K et al.. Role of HLA compatibility in pediatric living-related liver transplantation.  Transplantation. 2002;  74 1175-1180
  • 79 Sieders E, Hepkema B G, Peeters P M et al.. The effect of HLA mismatches, shared cross-reactive antigen groups, and shared HLA-DR antigens on the outcome after pediatric liver transplantation.  Liver Transpl. 2005;  11 1541-1549
  • 80 Langrehr J M, Puhl G, Bahra M et al.. Influence of donor/recipient HLA-matching on outcome and recurrence of hepatitis C after liver transplantation.  Liver Transpl. 2006;  12 644-651
  • 81 Post D J, Douglas D D, Mulligan D C. Immunosuppression in liver transplantation.  Liver Transpl. 2005;  11 1307-1314
  • 82 Wang C, Sun J, Sheil A G, McCaughan G W, Bishop G A. A short course of methylprednisolone immunosuppression inhibits both rejection and spontaneous acceptance of rat liver allografts.  Transplantation. 2001;  72 44-51
  • 83 Huang W H, Yan Y, Li J et al.. A short course of mycophenolate immunosuppression inhibits rejection, but not tolerance, of rat liver allografts in association with inhibition of interleukin-4 and alloantibody responses.  Transplantation. 2003;  76 1159-1165
  • 84 Huang W H, Yan Y, De Boer B, Bishop G A, House A K. A short course of cyclosporine immunosuppression inhibits rejection but not tolerance of rat liver allografts.  Transplantation. 2003;  75 368-374
  • 85 den Dulk M, Wang C, Li J et al.. Combined donor leucocyte administration and immunosuppressive drug treatment for survival of rat heart allografts.  Transpl Immunol. 2004;  13 177-184
  • 86 Tsui T Y, Jager M D, Deiwick A et al.. Delayed low-level calcineurin inhibition promotes allospecific tolerance induction by posttransplantation donor leukocyte infusion.  Transplantation. 2002;  73 1325-1332
  • 87 Shah A, Agarwal A, Mangus R et al.. Induction immunosuppression with rabbit antithymocyte globulin in pediatric liver transplantation.  Liver Transpl. 2006;  12 1210-1214
  • 88 Bishop G A, McCaughan G W. Immune activation is required for the induction of liver allograft tolerance: implications for immunosuppressive therapy.  Liver Transpl. 2001;  7 161-172
  • 89 Dousset B, Hubscher S G, Padbury R T et al.. Acute liver allograft rejection: is treatment always necessary?.  Transplantation. 1993;  55 529-534
  • 90 Davies H S, Pollard S G, Calne R Y. Soluble HLA antigens in the circulation of liver graft recipients.  Transplantation. 1989;  47 524-527
  • 91 Geissler E K, Korzun W J, Graeb C. Secreted donor-MHC class I antigen prolongs liver allograft survival and inhibits recipient anti-donor cytotoxic T lymphocyte responses.  Transplantation. 1997;  64 782-786
  • 92 Graeb C, Justl M, Scherer M N et al.. Use of an adenoviral vector to express soluble donor-major histocompatibility complex molecules capable of suppressing the immune response in rat transplant recipients.  Hum Immunol. 2002;  63 844-852
  • 93 Qian S, Fu F, Li Y et al.. Impact of donor MHC class I or class II antigen deficiency on first- and second-set rejection of mouse heart or liver allografts.  Immunology. 1996;  88 124-129
  • 94 Geissler E K, Graeb C, Tange S et al.. Effective use of donor MHC class I gene therapy in organ transplantation: prevention of antibody-mediated hyperacute heart allograft rejection in highly sensitized rat recipients.  Hum Gene Ther. 2000;  11 459-469
  • 95 Zavazava N, Kronke M. Soluble HLA class I molecules induce apoptosis in alloreactive cytotoxic T lymphocytes.  Nat Med. 1996;  2 1005-1010
  • 96 Altman J D, Moss P A, Goulder P J et al.. Phenotypic analysis of antigen-specific T lymphocytes.  Science. 1996;  274 94-96
  • 97 Hawiger D, Inaba K, Dorsett Y et al.. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo.  J Exp Med. 2001;  194 769-779
  • 98 Steinman R M, Hawiger D, Nussenzweig M C. Tolerogenic dendritic cells.  Annu Rev Immunol. 2003;  21 685-711
  • 99 Sumimoto R, Kamada N. Specific suppression of allograft rejection by soluble class I antigen and complexes with monoclonal antibody.  Transplantation. 1990;  50 678-682
  • 100 Siemionow M, Agaoglu G. Role of blood transfusion in transplantation: a review.  J Reconstr Microsurg. 2005;  21 555-563
  • 101 Tsui T Y, Deiwick A, Ko S, Schlitt H J. Specific immunosuppression by postoperative infusion of allogeneic spleen cells: requirement of donor major histocompatibility complex expression and graft-versus-host reactivity.  Transplantation. 2000;  69 25-30
  • 102 Yan Y, Shastry S, Richards C et al.. Posttransplant administration of donor leukocytes induces long-term acceptance of kidney or liver transplants by an activation-associated immune mechanism.  J Immunol. 2001;  166 5258-5264
  • 103 Starzl T E, Demetris A J, Murase N et al.. Cell migration, chimerism, and graft acceptance.  Lancet. 1992;  339 1579-1582
  • 104 Schlitt H J, Kanehiro H, Raddatz G et al.. Persistence of donor lymphocytes in liver allograft recipients.  Transplantation. 1993;  56 1001-1007
  • 105 Bishop G A, Sun J, DeCruz D J et al.. Tolerance to rat liver allografts: III. Donor cell migration and tolerance-associated cytokine production in peripheral lymphoid tissues.  J Immunol. 1996;  156 4925-4931
  • 106 Murase N, Ye Q, Sakamoto T et al.. Effect in supralethally irradiated rats of granulocyte colony-stimulating factor and lisofylline on hematopoietic reconstitution by syngeneic bone marrow or whole organ passenger leukocytes.  Transplantation. 1997;  63 1840-1843
  • 107 Bishop G A, Wang C, Sharland A F, McCaughan G. Spontaneous acceptance of liver transplants in rodents: evidence that liver leucocytes induce recipient T-cell death by neglect.  Immunol Cell Biol. 2002;  80 93-100
  • 108 Starzl T E, Lakkis F G. The unfinished legacy of liver transplantation: emphasis on immunology.  Hepatology. 2006;  43 S151-S163
  • 109 Bishop G A, Sun J, Sheil A G, McCaughan G W. High-dose/activation-associated tolerance: a mechanism for allograft tolerance.  Transplantation. 1997;  64 1377-1382
  • 110 Chiba S, Goto S, Shimizu Y et al.. The characterization of reconstituted passenger leukocytes on the induction of tolerance in rat liver transplantation.  Transpl Int. 1997;  10 350-356
  • 111 Dresske B, Lin X, Huang D S, Zhou X, Fandrich F. Spontaneous tolerance: experience with the rat liver transplant model.  Hum Immunol. 2002;  63 853-861
  • 112 Kreisel D, Petrowsky H, Krasinskas A M et al.. The role of passenger leukocyte genotype in rejection and acceptance of rat liver allografts.  Transplantation. 2002;  73 1501-1507
  • 113 Sun J, Sheil A G, Wang C et al.. Tolerance to rat liver allografts: IV. Acceptance depends on the quantity of donor tissue and on donor leukocytes.  Transplantation. 1996;  62 1725-1730
  • 114 Sun J, McCaughan G W, Matsumoto Y et al.. Tolerance to rat liver allografts: I. Differences between tolerance and rejection are more marked in the B cell compared with the T cell or cytokine response.  Transplantation. 1994;  57 1349-1357
  • 115 Sharland A, Yan Y, Wang C et al.. Evidence that apoptosis of activated T cells occurs in spontaneous tolerance of liver allografts and is blocked by manipulations which break tolerance.  Transplantation. 1999;  68 1736-1745
  • 116 Fuchs E J, Matzinger P. B cells turn off virgin but not memory T cells.  Science. 1992;  258 1156-1159
  • 117 Thomson A W, Lu L. Are dendritic cells the key to liver transplant tolerance?.  Immunol Today. 1999;  20 27-32
  • 118 Kashiwagi N, Porter K A, Penn I, Brettschneider L, Starzl T E. Studies of homograft sex and of gamma globulin phenotypes after orthotopic homotransplantation of the human liver.  Surg Forum. 1969;  20 374-376
  • 119 Starzl T E, Demetris A J, Trucco M et al.. Systemic chimerism in human female recipients of male livers.  Lancet. 1992;  340 876-877
  • 120 Devlin J, Doherty D, Thomson L et al.. Defining the outcome of immunosuppression withdrawal after liver transplantation.  Hepatology. 1998;  27 926-933
  • 121 Girlanda R, Rela M, Williams R, O'Grady J G, Heaton N D. Long-term outcome of immunosuppression withdrawal after liver transplantation.  Transplant Proc. 2005;  37 1708-1709
  • 122 Hamano K, Rawsthorne M A, Bushell A R, Morris P J, Wood K J. Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for maintenance of tolerance to alloantigen in vivo in anti-CD4 treated recipients.  Transplantation. 1996;  62 856-860
  • 123 Hisanaga M, Hundrieser J, Boker K et al.. Development, stability, and clinical correlations of allogeneic microchimerism after solid organ transplantation.  Transplantation. 1996;  61 40-45
  • 124 Ko S, Deiwick A, Jager M D et al.. The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat.  Nat Med. 1999;  5 1292-1297
  • 125 Schlitt H J, Hundrieser J, Ringe B, Pichlmayr R. Donor-type microchimerism associated with graft rejection eight years after liver transplantation.  N Engl J Med. 1994;  330 646-647
  • 126 Wood K, Sachs D H. Chimerism and transplantation tolerance: cause and effect.  Immunol Today. 1996;  17 584-587 , discussion 588
  • 127 Sivasai K S, Alevy Y G, Duffy B F et al.. Peripheral blood microchimerism in human liver and renal transplant recipients: rejection despite donor-specific chimerism.  Transplantation. 1997;  64 427-432
  • 128 Kubit V, Sonmez-Alpan E, Zeevi A et al.. Mixed allogeneic chimerism in lung allograft recipients.  Hum Pathol. 1994;  25 408-412
  • 129 Schlitt H J, Hundrieser J, Hisanaga M et al.. Patterns of donor-type microchimerism after heart transplantation.  Lancet. 1994;  343 1469-1471
  • 130 Starzl T E, Demetris A J, Trucco M et al.. Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation.  Transplantation. 1993;  55 1272-1277
  • 131 Kiyomoto T, Toyokawa H, Nakao A et al.. The difficulty of eliminating donor leukocyte microchimerism in rat recipients bearing established organ allografts.  Transplantation. 2006;  81 438-444
  • 132 Shirwan H, Wang H K, Barwari L, Makowka L, Cramer D V. Pretransplant injection of allograft recipients with donor blood or lymphocytes permits allograft tolerance without the presence of persistent donor microchimerism.  Transplantation. 1996;  61 1382-1386
  • 133 Bonilla W V, Geuking M B, Aichele P et al.. Microchimerism maintains deletion of the donor cell-specific CD8 + T cell repertoire.  J Clin Invest. 2006;  116 156-162
  • 134 Ehl S, Aichele P, Ramseier H et al.. Antigen persistence and time of T-cell tolerization determine the efficacy of tolerization protocols for prevention of skin graft rejection.  Nat Med. 1998;  4 1015-1019
  • 135 Salgar S K, Shapiro R, Dodson F et al.. Infusion of donor leukocytes to induce tolerance in organ allograft recipients.  J Leukoc Biol. 1999;  66 310-314
  • 136 Steinman R M, Gutchinov B, Witmer M D, Nussenzweig M C. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice.  J Exp Med. 1983;  157 613-627
  • 137 Steinbrink K, Jonuleit H, Muller G et al.. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8( + ) T cells resulting in a failure to lyse tumor cells.  Blood. 1999;  93 1634-1642
  • 138 Jonuleit H, Schmitt E, Steinbrink K, Enk A H. Dendritic cells as a tool to induce anergic and regulatory T cells.  Trends Immunol. 2001;  22 394-400
  • 139 Jonuleit H, Adema G, Schmitt E. Immune regulation by regulatory T cells: implications for transplantation.  Transpl Immunol. 2003;  11 267-276
  • 140 Mahnke K, Schmitt E, Bonifaz L, Enk A H, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells.  Immunol Cell Biol. 2002;  80 477-483
  • 141 Ochando J C, Homma C, Yang Y et al.. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts.  Nat Immunol. 2006;  7 652-662
  • 142 Steptoe R J, Li W, Fu F, O'Connell P J, Thomson A W. Trafficking of APC from liver allografts of Flt3L-treated donors: augmentation of potent allostimulatory cells in recipient lymphoid tissue is associated with a switch from tolerance to rejection.  Transpl Immunol. 1999;  7 51-57
  • 143 Bertolino P, McCaughan G W, Bowen D G. Role of primary intrahepatic T-cell activation in the “liver tolerance effect”.  Immunol Cell Biol. 2002;  80 84-92
  • 144 Thomson A W, Drakes M L, Zahorchak A F et al.. Hepatic dendritic cells: immunobiology and role in liver transplantation.  J Leukoc Biol. 1999;  66 322-330
  • 145 Goddard S, Youster J, Morgan E, Adams D H. Interleukin-10 secretion differentiates dendritic cells from human liver and skin.  Am J Pathol. 2004;  164 511-519
  • 146 De Creus A, Abe M, Lau A H et al.. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin.  J Immunol. 2005;  174 2037-2045
  • 147 Thomson A W, Lu L, Murase N et al.. Microchimerism, dendritic cell progenitors and transplantation tolerance.  Stem Cells. 1995;  13 622-639
  • 148 Kabelitz D, Wesch D, Oberg H H. Regulation of regulatory T cells: role of dendritic cells and toll-like receptors.  Crit Rev Immunol. 2006;  26 291-306
  • 149 Yamazaki S, Inaba K, Tarbell K V, Steinman R M. Dendritic cells expand antigen-specific Foxp3 + CD25 + CD4 + regulatory T cells including suppressors of alloreactivity.  Immunol Rev. 2006;  212 314-329
  • 150 Abe M, Akbar S M, Horiike N, Onji M. Induction of cytokine production and proliferation of memory lymphocytes by murine liver dendritic cell progenitors: role of these progenitors as immunogenic resident antigen-presenting cells in the liver.  J Hepatol. 2001;  34 61-67
  • 151 Fu F, Li W, Lu L et al.. Treatment with CTLA4-Ig inhibits rejection of liver allografts from FIt3-ligand-treated donors.  Transplant Proc. 1999;  31 453
  • 152 Li W, Lu L, Wang Z et al.. CTLA4-Ig inhibits rejection of mouse liver allografts from Flt3-ligand-treated donors and is associated with increased lymphocyte apoptosis.  Transplant Proc. 2001;  33 246-247
  • 153 Li W, Lu L, Wang Z et al.. Il-12 antagonism enhances apoptotic death of T cells within hepatic allografts from Flt3 ligand-treated donors and promotes graft acceptance.  J Immunol. 2001;  166 5619-5628
  • 154 Lian Z X, Okada T, He X S et al.. Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations.  J Immunol. 2003;  170 2323-2330
  • 155 Weller M, Constam D B, Malipiero U, Fontana A. Transforming growth factor-beta 2 induces apoptosis of murine T cell clones without down-regulating bcl-2 mRNA expression.  Eur J Immunol. 1994;  24 1293-1300
  • 156 Bissell D M, Wang S S, Jarnagin W R, Roll F J. Cell-specific expression of transforming growth factor-beta in rat liver: evidence for autocrine regulation of hepatocyte proliferation.  J Clin Invest. 1995;  96 447-455
  • 157 Good R A. Mixed chimerism and immunologic tolerance.  N Engl J Med. 1993;  328 801-802
  • 158 Sykes M. Chimerism and central tolerance.  Curr Opin Immunol. 1996;  8 694-703
  • 159 Duncan S R, Capetanakis N G, Lawson B R, Theofilopoulos A N. Thymic dendritic cells traffic to thymi of allogeneic recipients and prolong graft survival.  J Clin Invest. 2002;  109 755-764
  • 160 Bonasio R, Scimone M L, Schaerli P et al.. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus.  Nat Immunol. 2006;  7 1092-1100
  • 161 Kobayashi E, Kamada N, Delriviere L et al.. Migration of donor cells into the thymus is not essential for induction and maintenance of systemic tolerance after liver transplantation in the rat.  Immunology. 1995;  84 333-336
  • 162 Lu L, Qian S, Hershberger P A et al.. Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation.  J Immunol. 1997;  158 5676-5684
  • 163 Khanna A, Morelli A E, Zhong C et al.. Effects of liver-derived dendritic cell progenitors on Th1- and Th2-like cytokine responses in vitro and in vivo.  J Immunol. 2000;  164 1346-1354
  • 164 Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk A H. Induction of tolerance by IL-10-treated dendritic cells.  J Immunol. 1997;  159 4772-4780
  • 165 Bonham C A, Lu L, Banas R A et al.. TGF-beta 1 pretreatment impairs the allostimulatory function of human bone marrow-derived antigen-presenting cells for both naive and primed T cells.  Transpl Immunol. 1996;  4 186-191
  • 166 Menges M, Rossner S, Voigtlander C et al.. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity.  J Exp Med. 2002;  195 15-21
  • 167 Sriwatanawongsa V, Davies H S, Calne R Y. The essential roles of parenchymal tissues and passenger leukocytes in the tolerance induced by liver grafting in rats.  Nat Med. 1995;  1 428-432
  • 168 Thai N L, Qian S, Fu F et al.. Mouse liver transplantation tolerance: the role of hepatocytes and nonparenchymal cells.  Transplant Proc. 1995;  27 509-510
  • 169 Bowen D G, McCaughan G W, Bertolino P. Intrahepatic immunity: a tale of two sites?.  Trends Immunol. 2005;  26 512-517
  • 170 Bertolino P, Bowen D G, McCaughan G W, Fazekas de St Groth B. Antigen-specific primary activation of CD8 + T cells within the liver.  J Immunol. 2001;  166 5430-5438
  • 171 MacPhee P J, Schmidt E E, Groom A C. Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy.  Am J Physiol. 1995;  269 G692-G698
  • 172 Warren A, Le Couteur D G, Fraser R et al.. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells.  Hepatology. 2006;  44 1182-1190
  • 173 Wong J, Johnston B, Lee S S et al.. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature.  J Clin Invest. 1997;  99 2782-2790
  • 174 Bowen D G, Zen M, Holz L et al.. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity.  J Clin Invest. 2004;  114 701-712
  • 175 Bertolino P, Trescol-Biemont M C, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD8 + T lymphocytes but fail to promote survival.  Eur J Immunol. 1998;  28 221-236
  • 176 Qian S, Lu L, Fu F et al.. Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction.  J Immunol. 1997;  158 4654-4661
  • 177 Klein I, Crispe I N. Complete differentiation of CD8 + T cells activated locally within the transplanted liver.  J Exp Med. 2006;  203 437-447
  • 178 Crispe I N, Dao T, Klugewitz K, Mehal W Z, Metz D P. The liver as a site of T-cell apoptosis: graveyard, or killing field?.  Immunol Rev. 2000;  174 47-62
  • 179 Mehal W Z, Azzaroli F, Crispe I N. Antigen presentation by liver cells controls intrahepatic T cell trapping, whereas bone marrow-derived cells preferentially promote intrahepatic T cell apoptosis.  J Immunol. 2001;  167 667-673
  • 180 Perillo N L, Pace K E, Seilhamer J J, Baum L G. Apoptosis of T cells mediated by galectin-1.  Nature. 1995;  378 736-739
  • 181 Mehal W Z, Crispe I N. TCR ligation on CD8 + T cells creates double-negative cells in vivo.  J Immunol. 1998;  161 1686-1693
  • 182 Dong H, Zhu G, Tamada K et al.. B7-H1 determines accumulation and deletion of intrahepatic CD8( + ) T lymphocytes.  Immunity. 2004;  20 327-336
  • 183 Krammer P H. CD95(APO-1/Fas)-mediated apoptosis: live and let die.  Adv Immunol. 1999;  71 163-210
  • 184 Nagata S, Suda T. Fas and Fas ligand: lpr and gld mutations.  Immunol Today. 1995;  16 39-43
  • 185 Nagata S. Apoptosis by death factor.  Cell. 1997;  88 355-365
  • 186 Yoshimura S, Gotoh S, Kamada N. Immunological tolerance induced by liver grafting in the rat: splenic macrophages and T cells mediate distinct phases of immunosuppressive activity.  Clin Exp Immunol. 1991;  85 121-127
  • 187 Gassel H J, Hutchinson I V, Engemann R, Morris P J. The role of T suppressor cells in the maintenance of spontaneously accepted orthotopic rat liver allografts.  Transplantation. 1992;  54 1048-1053
  • 188 Knoop M, Pratt J R, Hutchinson I V. Evidence of alloreactive T suppressor cells in the maintenance phase of spontaneous tolerance after orthotopic liver transplantation in the rat.  Transplantation. 1994;  57 1512-1515
  • 189 Olver S, Goto S, Chiba S, Clouston A, Kelso A. Persistence of donor-reactive CD4 + T cells in liver and spleen of rats tolerant to a liver allograft.  Transplantation. 1998;  66 132-135
  • 190 Dorsch S, Roser R. Recirculating, suppressor T cells in transplantation tolerance.  J Exp Med. 1977;  145 1144-1157
  • 191 Hall B M, Pearce N W, Gurley K E, Dorsch S E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine: III. Further characterization of the CD4 + suppressor cell and its mechanisms of action.  J Exp Med. 1990;  171 141-157
  • 192 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.  J Immunol. 1995;  155 1151-1164
  • 193 Wood K J, Sakaguchi S. Regulatory T cells in transplantation tolerance.  Nat Rev Immunol. 2003;  3 199-210
  • 194 Dahmen U, Qian S, Rao A S et al.. Split tolerance induced by orthotopic liver transplantation in mice.  Transplantation. 1994;  58 1-8
  • 195 Tsuchimoto S, Kakita A, Uchino J et al.. Mechanism of tolerance in rat liver transplantation: evidence for the existence of suppressor cells.  Transplant Proc. 1987;  19 514-518
  • 196 Kataoka M, Margenthaler J A, Ku G, Eilers M, Flye M W. “Infectious tolerance” develops after the spontaneous acceptance of Lewis-to-Dark Agouti rat liver transplants.  Surgery. 2003;  134 227-234
  • 197 Asakura H, Ku G, Kataoka M, Flye M W. Regulatory cells develop after the spontaneous acceptance of rat liver allografts.  Surgery. 2004;  136 532-536
  • 198 Jiang X, Morita M, Sugioka A et al.. The importance of CD25 + CD4 + regulatory T cells in mouse hepatic allograft tolerance.  Liver Transpl. 2006;  12 1112-1118
  • 199 Yoshizawa A, Ito A, Li Y et al.. The roles of CD25 + CD4 + regulatory T cells in operational tolerance after living donor liver transplantation.  Transplant Proc. 2005;  37 37-39
  • 200 Demirkiran A, Kok A, Kwekkeboom J et al.. Low circulating regulatory T-cell levels after acute rejection in liver transplantation.  Liver Transpl. 2006;  12 277-284

Patrick Bertolino
Ph.D. Volker BenselerM.D. 

AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology

Locked Bag No. 6, Newtown 2042, NSW, Australia

    >