ABSTRACT
Sex steroid hormones, including estrogen, progesterone, and androgen, mediate their
biological effects on cell proliferation, differentiation, and homeostasis through
their respective nuclear receptors. In addition to functioning as ligand-activated
nuclear transcription factors to regulate gene transcription, these receptors also
have been shown to mediate rapid activation of non-genomic signaling pathways independent
of their transcriptional activity. Despite the fact that non-genomic effects of sex
steroids have been observed since more than three decades ago, the receptor mechanisms
mediating these rapid effects still are not well understood. A subpopulation of nuclear
steroid receptors localized to the cell membrane or cytoplasm has been proposed to
mediate steroid hormone activation of signaling pathways; however, novel membrane
receptors unrelated to nuclear receptors have also been implicated. This review focuses
on recent advances in our understanding of the nature of the receptors and mechanisms
responsible for rapid non-genomic signaling actions of sex steroids, including novel
membrane receptors and interactions of nuclear steroid receptors with membrane and
cytoplasmic signaling molecules such as adapter proteins, G proteins, ion channels,
and protein kinases. A better definition of receptor mechanisms involved in mediating
activation of non-genomic signaling pathways is important to our overall understanding
of the biology of steroid hormones.
KEYWORDS
Estrogen receptor - progesterone receptor - androgen receptor - non-genomic action
- signal transduction
REFERENCES
- 1
Mangelsdorf D J, Tummel C, Beato M et al..
The nuclear receptor superfamily: the second decade.
Cell.
1995;
83
835-839
- 2
Tsai M, O'Malley B.
Molecular mechanisms of action of steroid/thyroid receptor superfamily members.
Annu Rev Biochem.
1994;
63
451-486
- 3
McKenna N J, Lanz R B, O'Malley B W.
Nuclear receptor coregulators: cellular and molecular biology.
Endocr Rev.
1999;
20(3)
321-344
- 4
Ahrens-Fath I, Politz O, Geserick C, Haendler B.
Androgen receptor function is modulated by the tissue-specific AR45 variant.
FEBS J.
2005;
272
74-84
- 5
Kuiper G GJM, Enmark E, Pelto H-M, Nilsson S, Gustafsson J-A.
Cloning of a novel estrogen receptor expressed in rat prostate and ovary.
Proc Natl Acad Sci USA.
1996;
93
5925-5930
- 6
Cowley S M, Parker M G.
A comparison of transcriptional activation by ERa and ERb.
J Steroid Biochem Mol Biol.
1999;
69
165-175
- 7
Hall J M, McDonnell D P.
The estrogen receptor-b isoform (ERb) of the human estrogen receptor modulates ERa
transcriptional activity and is a key regulator of the cellular response to estrogens
and antiestrogens.
Endocrinology.
1999;
140(12)
5566-5578
- 8
McInerney E M, Weis K E, Sun J, Mosselman S, Katzenellenbogen B S.
Transcriptional activation by the human estrogen receptor subtype b (ERb) studies
with ERb and ERa receptor chimeras.
Endocrinology.
1998;
139(11)
4513-4522
- 9
Kastner P, Krust A, Turcotte B et al..
Two distinct estrogen-regulated promoters generate transcripts encoding two functionally
different human progesterone receptor forms A and B.
EMBO J.
1990;
9
1603-1614
- 10 Edwards D P.
Progesterone receptor structure/function and crosstalk with cellular signaling pathways. In: Henry HL, Norman AW Encyclopedia of Hormones. San Diego, CA; Academic Press
2004
- 11
Giangrande P H, McDonnell D P.
The A and B isoforms of the human progesterone receptor: two functionally different
transcription factors encoded by a single gene.
Recent Prog Horm Res.
1999;
54
291-313
- 12
Li X, O'Malley B W.
Unfolding the action of progesterone receptor.
J Biol Chem.
2003;
278
39261-39264
- 13
Baulieu E E.
Cell membrane a target for steroid hormone.
Mol Cell Endocrinol.
1978;
12
247-254
- 14
Benten W P, Lieberherr M, Sekeris C E, Wunderlich F.
Testosterone induces Ca2 + influx via non-genomic surface receptors in activated T
cells.
FEBS Lett.
1997;
407
211-214
- 15
Pietras R J, Szego C M.
Specific binding sites of estrogen at the outer surface of isolated endometrial cells.
Nature.
1977;
265
69-72
- 16
Falkenstein E, Norman A W, Wehling M.
Mannheim classification of non genomically initiated (rapid) steroid action(s).
J Clin Endocrinol Metab.
2000;
85
2071-2075
- 17
Simoncini T, Genazzani A R.
Non-genomic actions of sex steroid hormones.
Eur J Endocrinol.
2003;
148
281-292
- 18
Bjornstrom L, Sjoberg M.
Signal transducers and activator of transcription as downstream targets of nongenomic
estrogen receptor actions.
Mol Endocrinol.
2002;
16(10)
2202-2214
- 19
Duan R, Xie W, Burghardt R C, Safe S.
Estrogen receptor-mediated activation of serum response element in MCF-7 cells through
MAPK-dependent phosphorylation of Elk-1.
J Biol Chem.
2001;
276
11590-11598
- 20
Kousteni S, Bellido T, Plotkin L I et al..
Nongenotropic, sex-nonspecific signaling through the estrogen or androgen recptors:
dissociation from transcriptional activity.
Cell.
2001;
104
719-730
- 21
Kousteni S, Chen J R, Bellido T et al..
Reversal of bone loss in mice by non-genotropic signaling of sex steroids.
Science.
2002;
298
843-846
- 22
Pedram A, Razandi M, Aitkenhead M, Hughes C W, Levin E R.
Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated
signaling by steroid to transcription and cell biology.
J Biol Chem.
2002;
277(52)
50768-50775
- 23
Zheng F F, Wu R-C, Smith C L, O'Malley B W.
Rapid estrogen-induced phosphorylation of the SRC-3 coactivator occurs in an extranuclear
complex containing estrogen receptor.
Mol Cell Biol.
2005;
25
8273-8284
- 24
Zhu Y, Rice C D, Pang Y, Pace M, Thomas P.
Cloning, expression and characterization of a novel membrane progestin receptor and
evidence it is an intermediary in meiotic maturation of fish oocytes.
Proc Natl Acad Sci USA.
2003;
100
2231-2236
- 25
Zhu Y, Bond J, Thomas P.
Identification, classification, and partial characterization of genes in humans and
other vertebrates homologous to a fish membrane progestin receptor.
Proc Natl Acad Sci USA.
2003;
100(5)
2237-2242
- 26
Karteris E, Zervou S, Pang Y et al..
Progesterone signaling in human myometrium through two novel membrane G protein-coupled
receptors: potential role in functional progesterone withdrawal at term.
Mol Endocrinol.
2006;
20
1519-1534
- 27
Krietsch T, Fernandes M S, Kero J et al..
Human homologs of the putative G protein-couple membrane progestin receptors (mPRα,
β, γ) localize to the endoplasmic reticulum and are not activated by progesterone.
Mol Endocrinol.
2006;
20
3146-3164
- 28
Revankar C M, Cimino D F, Sklar L A, Arterburn J B, Prossnitz E R.
A transmembrane intracellular estrogen receptor mediates rapid cell signaling.
Science.
2005;
307
1625-1630
- 29
Thomas P, Pang Y, Filardo E J, Dong J.
Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer
cells.
Endocrinology.
2005;
146
624-632
- 30
Filardo E J, Quinn J A, Bland K I, Frackelton A RJ.
Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor
homolog, GPR30, and occurs via transactivation of the epidermal growth factor receptor
through release of HB-EGF.
Mol Endocrinol.
2000;
14
1649-1660
- 31
Filardo E J, Quinn J A, Frackelton A RJ, Bland K I.
Estrogen action via the G protein-coupled receptor, GPR30: Stimulation of adenylyl
cyclase and cAMP-mediated attenuation of epidermal growth factor receptor-to-MAPK
signaling axis.
Mol Endocrinol.
2002;
16
70-84
- 32
Maggiolini M, Vivacqua A, Fasanella G et al..
The G protein-coupled receptor GPR30 mediates c-fos up-regualtion by 17β-estradiol
and phytoestrogens in breast cancer cells.
J Biol Chem.
2004;
279
27008-27016
- 33
Pedram A, Razandi M, Levin E R.
Nature of functional estrogen receptors at the plasma membrane.
Mol Endocrinol.
2006;
20
1996-2009
- 34
Ahola T M, Manninen T, Alokio N, Ylikomi T.
G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition
in MCF-7 breast cancer cells.
Endocrinology.
2002;
143(9)
3376-3384
- 35
Bologa C G, Revankar C M, Young S M et al..
Virtual and biomolecular screening converge on a selective agonist for GPR30.
Nat Chem Biol.
2006;
2
207-212
- 36
Figueroa-Valverde L, Luna H, Castillo-Henkel C, Munoz-Gracia O, Morato-Cartagena T,
Ceballos-Reyes G.
Synthesis and evaluation of the cardiovascular effects of two, membrane impermeant
macromolecular complexes of dextran-testosterone.
Steroids.
2002;
67
611-619
- 37
Kampa M, Papakonstanti E A, Hotzoglou A, Stathopoulos E N, Stournaras C, Castanas E.
The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors
that increase PSA secretion and modify actin cytoskeleton.
FASEB J.
2002;
16
1429-1431
- 38
Kampa M, Nifi A P, Charalampopoulos I et al..
Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast
cancer cell apoptosis.
Exp Cell Res.
2005;
307
41-51
- 39
Armen T A, Gay C V.
Simultaneous detection and functional response of testosterone and estradiol receptors
in osteoblast plasma membranes.
J Cell Biochem.
2000;
79
620-627
- 40
Guo Z, Benten W P, Krucken J, Wunderlich F.
Nongenomic testosterone calcium signaling. Genotropic actions in androgen receptor-free
macrophages.
J Biol Chem.
2002;
277
29600-29607
- 41
Benten W P, Lieberherr M, Giese G et al..
Functional testosterone receptors in plasma membranes of T cells.
FASEB J.
1999;
13
123-133
- 42
Papakonstanti E A, Marilena K, Castanas E, Stournaras C.
A rapid, nongenomic, signaling pathway regulates the actin reorganization induced
by activation of membrane testosterone receptors.
Mol Endocrinol.
2003;
17(5)
870-881
- 43
Srivastava A K, Dey S B, Roy S K.
Interaction of cyproterone acetate with sex hormone binding globulin of monkey plasma.
Exp Clin Endocrinol.
1983;
82
232-234
- 44
Nakhla A M, Leonard J, Hryb D J, Rosner W.
Sex hormone binding globulin receptor signal transduction proceeds via a G-protein.
Steroids.
1999;
64
213-216
- 45
Nakhla A M, Romas N A, Rosner W.
Estradiol activates the prostate androgen receptor and prostate-specific antigen secretion
through the intermediacy of sex hormone-binding globulin.
J Biol Chem.
1997;
272
6838-6841
- 46
Levin E R.
Cellular functions of plasma membrane estrogen receptors.
Steroids.
2002;
67
471-475
- 47
Pappas T C, Gametchu B, Watson C S.
Membrane estrogen receptor identified by multiple labeling and impeded-ligand binding.
FASEB J.
1995;
9
404-410
- 48
Sabeur K, Edwards D P, Meizel S.
Human sperm plasma membrane progesterone receptor(s) and the acrosome reaction.
Biol Reprod.
1996;
54
993-1001
- 49
Song R X, Barnes C J, Zhang Z, Bao Y, Kumar R, Santen R J.
The role of Shc and insulin-like growth factor I receptor in mediating the translocation
of estrogen receptor alpha to the plasma membrane.
Proc Natl Acad Sci USA.
2004;
101
2076-2081
- 50
Song R X-D, McPherson R A, Adam L et al..
Linkage of rapid estrogen action to MAPK activation of ERa-Shc association and Shc
pathway activation.
Mol Endocrinol.
2002;
16
116-127
- 51
Razandi M, Pedram A, Greene G L, Levin E R.
Cell membrane and nuclear estrogen receptors drive from a single transcript: studies
of ERa and ERb expressed in CHO cells.
Mol Endocrinol.
1999;
13
307-319
- 52
Razandi M, Oh P, Pedram A, Schnitzer J, Levin E R.
ERs associates with and regulate the production of caveolin: implications for signaling
and cellular actions.
Mol Endocrinol.
2002;
16(1)
100-115
- 53
Rai D, Frolova A, Frasor J, Carpenter A E, Katzenellenbogen B S.
Distinctive actions of membrane-targeted versus nuclear localized estrogen receptors
in breast cancer cells.
Mol Endocrinol.
2005;
19
1606-1617
- 54
Razandi M, Pedram A, Merchenthaler I, Greene G L, Levin E R.
Plasma membrane estrogen receptors exist and functions as dimers.
Mol Endocrinol.
2004;
18
2854-2865
- 55
Abraham I M, Todman M G, Korach K S, Herbison A E.
Critical in vivo roles for classical estrogen receptors in rapid estrogen actions
on intracellular signaling in mouse brain.
Endocrinology.
2004;
145
3055-3061
- 56
Evinger A JI, Levin E R.
Requirement for estrogen receptor α membrane localization and function.
Steroids.
2005;
70
361-363
- 57
Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin E R.
Identification of structural determinant necessary for the localization and function
of estrogen receptor a at the plasma membrane.
Mol Cell Biol.
2003;
23(5)
1633-1646
- 58
Li L, Haynes M P, Bender J R.
Plasma membrane localization and function of the estrogen receptor α variant (ER46)
in human endothelial cells.
Proc Natl Acad Sci USA.
2003;
100
4807-4812
- 59
Marquez D C, Pictras R J.
Membrane-associated binding sites for estrogen contribute to growth regulation of
human breast cancer cells.
Oncogene.
2001;
2001(20)
5420-5430
- 60
Hammes S R.
Steroid and oocyte maturation-a new look at an old story.
Mol Endocrinol.
2004;
18
769-775
- 61
Maller J L.
The elusive progesterone receptor in Xenopus oocytes.
Proc Natl Acad Sci USA.
2001;
98
8-10
- 62
Bayaa M, Booth R A, Sheng Y, Liu X J.
The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism.
Proc Natl Acad Sci USA.
2000;
97
12607-12612
- 63
Tian J, Kim S, Heilig E, Ruderman J V.
Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation.
Proc Natl Acad Sci USA.
2000;
97
14358-14363
- 64
Bagowski C P, Myers J W, Ferrell Jr J E.
The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol
3-kinase signaling in Xenopus oocytes.
J Biol Chem.
2001;
276(40)
37708-37714
- 65
Lutz L B, Cole M K, Gupta K W, Kwist R J, Auchus R J, Hammes S R.
Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries
and may signal through the classical androgen receptor to promote oocyte maturation.
Proc Natl Acad Sci USA.
2001;
98
13728-13733
- 66
Lutz L B, Jamnonjit M, Yang W-H, Jahani D, Gill A, Hammes S R.
Selective modulation of genomic and nongenomic androgen responses by androgen receptor
ligands.
Mol Endocrinol.
2003;
17
1106-1116
- 67
Gill A, Jamnonjit M, Hammes S R.
Androgens promote maturation and signaling in mouse oocytes independent of transcription:
a release of inhibition model for mammalian oocyte meiosis.
Mol Endocrinol.
2004;
18
97-104
- 68
Mulholland D J, Dedhar S, Coetzee G A, Nelson C C.
Interaction of nulcear receptors with the Wnt/β-catenin/Tcf axis: Wnt you like to
know?.
Endocr Rev.
2005;
26
898-915
- 69
Smart E J, Graft G A, McNiven M A et al..
Caveolins, liquid-ordered domains, and signal transduction.
Mol Cell Biol.
1999;
19
7289-7304
- 70
Lu M L, Schneider M C, Zheng Y, Zhang X, Richie J P.
Caveolin-1 interact with androgen receptor. A positive modulator of androgen receptor
mediated transactivation.
J Biol Chem.
2001;
276
13442-13451
- 71
Schlegel A, Wang C, Katzenellenbogen B S, Pestell R G, Lisanti M P.
Caveolin-1 potentiates estrogen receptor alpha (ERα) signaling, caveolin-1 drives
ligand-independent nuclear translocation and activation of ERα.
J Biol Chem.
1999;
274
33551-33556
- 72
Salatino M, Beguelin W, Peters M G et al..
Progestin-induced caveolin-1 expression mediates breast cancer cell proliferation.
Oncogene.
2006;
25
7723-7739
- 73
Lu Q, Pallas D C, Surks H K, Baur W E, Mendelsohn M E, Karas R H.
Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation
of endothelial NO synthase by estrogen receptor alpha.
Proc Natl Acad Sci USA.
2004;
101
17126-17131
- 74
Lee H, Park D S, Razani B, Russell R G, Lisanti M P.
Caveolin mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1
(P132L) behaves in a dominant-negative manner and caveolin-1 ( - / - ) null mice show
mammary epithelial cell hyperplasia.
Am J Pathol.
2002;
161
1357-1369
- 75
Li T, Sotgia F, Vuolo M et al..
Caveolin-1 mutations in human breast cancer: functional association with estrogen
receptor α-positive status.
Am J Pathol.
2006;
168
1998-2013
- 76
Thompson T C, Timme T L, Li L, Goltsov A.
Caveolin-1, a metastasis-related gene that promote cell survival in prostate cancer.
Apoptosis.
1999;
4(4)
233-237
- 77
Kumar R, Wang R-A, Mazumdar A et al..
A naturally occurring MTA1 variant sequesters oestrogen receptor-a in the cytoplasm.
Nature.
2002;
418
654-657
- 78
Mazumdar A, Wang R-A, Mishra S K et al..
Transcriptional repression of estrogen receptor by metastasis-associated protein 1
corepressor.
Nat Cell Biol.
2001;
3
30-37
- 79
Gururaj A E, Singh R R, Rayala S K et al..
MTA1, a transcriptional activator of breast cancer amplified sequence 3.
Proc Natl Acad Sci USA.
2006;
103
6670-6675
- 80
Sato K, Nagao T, Kakumoto M et al..
Adapter protein Shc is an isoform-specific direct activator of the tyrosine kinase
c-Src.
J Biol Chem.
2002;
277
29568-29576
- 81
Cabodi S, Moro L, Baj G et al..
p130Cas interacts with estrogen receptor α and modulates non-genomic estrogen signaling
in breast cancer cells.
J Cell Sci.
2004;
117
1603-1611
- 82
Vadlamudi R K, Wang A, Mazumdar A et al..
Molecular cloning and characterization of PELP-1, a novel human coregulator of estrogen
receptor α.
J Biol Chem.
2001;
276
38272-38279
- 83
Wong C-W, McNally C, Nickbarg E, Komm B S, Cheskis B J.
Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk
with Src/Erk phosphorylation cascade.
Proc Natl Acad Sci USA.
2002;
99(23)
14783-14788
- 84
Barletta F, Wong C-W, McNally B S, Komm B S, Katzenellenbogen B S, Cheskis B J.
Characterization of the interactions of estrogen receptor and MNAR in the activation
of c-Src.
Mol Endocrinol.
2004;
18
1096-1108
- 85
Unni E, Sun S, Nan B et al..
Changes in androgen receptor nongenotropic signaling correlate with transition of
LNCaP cells to androgen independence.
Cancer Res.
2004;
64
7156-7168
- 86
Haas D, White S N, Lutz L B, Rasar M, Hammes S R.
The modulator of nongenomic actions of estrogen receptor (MNAR) regulates transcription-independent
androgen receptor-mediated signaling: Evidence that MNAR participates in G protein-regulated
meiosis in Xenopus laevis oocytes.
Mol Endocrinol.
2005;
19
2035-2046
- 87
Nakajima T, Kitazawa T, Hamada E, Hazama H, Omata M, Kurachi Y.
17β-estradiol inhibits the voltage-dependent L-type Ca2+currents in aortic smooth muscle cells.
Eur J Pharmacol.
1995;
294
625-635
- 88
White R E, Darkow D J, Lang J L.
Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent
mechanism.
Circ Res.
1995;
77
936-942
- 89
Valverde M A, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde M I.
Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit.
Science.
1999;
285
1929-1931
- 90
Mendoza C, Soler A, Tesarik J.
Non-genomic steroid action: independent targeting of a plasma membrane calcium channel
and a tyrosine kinase.
Biochem Biophys Res Commun.
1995;
210
518-523
- 91
Grosse B, Kachkache M, Le Mellay V, Lieberherr M.
Membrane signaling and progesterone in female and male osteoblasts: involvement of
intracellular Ca2+, inositol triphosphate and diacylglycerol, but not cAMP.
J Cell Biochem.
2000;
79
334-345
- 92
Barbagallo M, Dominguez L J, Licata G, Shan J, Bing L, Karpinski E.
Vascular effects of progesterone: role of cellular calcium regulation.
Hypertension.
2001;
37
142-147
- 93
Le Mellay V, Grosse B, Lieberherr M.
Phospholipase C beta and membrane action of calcitriol and estradiol.
J Biol Chem.
1997;
272
11902-11907
- 94
Wyckoff M H, Chambliss K L, Mineo C et al..
Plasma membrane estrogen receptors are coupled to endothlial nitric-oxide synthase
through Gai.
J Biol Chem.
2001;
276
27071-27076
- 95
Razandi M, Pedram A, Park S T, Levin E R.
Proximal events in signaling by plasma membrane estrogen receptors.
J Biol Chem.
2003;
278
2701-2712
- 96
Kurebayashi J, Okubo S, Yamamoto Y, Sonoo H.
Inhibition of HER1 signaling pathway enhances antitumor effect of endocrine therapy
in breast cancer.
Breast Cancer.
2004;
11
38-41
- 97
Grazzini E, Guillon G, Mouillac B, Zingg H H.
Inhibition of oxytocin receptor function by direct binding of progesterone.
Nature.
1998;
392
509-512
- 98
Heinlein C A, Chang C.
The role of androgen receptors and androgen-binding proteins in nongenomic androgen
actions.
Mol Endocrinol.
2002;
16
2181-2187
- 99
Sun Y-H, Gao X, Tang Y-J, Xu C-L, Wang L-H.
Androgens induces increases intracelluar calcium via a G-protein-coupled receptor
in LNCaP prostate cancer cells.
J Androl.
2006;
27
671-678
- 100
Thomas S M, Brugge J S.
Celluar functions regulated by Src family kinases.
Annu Rev Cell Dev Biol.
1997;
13
513-609
- 101
Xu W, Doshi A, Lei M, Eck M J, Harrison S C.
Crystal structures of c-Src reveal features of its autoinhibitory mechanism.
Mol Cell.
1999;
3
629-638
- 102
Castoria G, Barone M V, Demenico M D et al..
Non-transcriptional action of estradiol and progestin triggers DNA synthesis.
EMBO J.
1999;
18
2500-2510
- 103
Boonyaratanakornkit V, Scott M P, Ribon V et al..
Progesterone receptor contains a proline-rich motif that directly interacts with SH3
domains and activates c-Src family tyrosine kinases.
Mol Cell.
2001;
8
269-280
- 104
Boonyaratanakornkit V, McGowan E J, Sherman L, Mancini M A, Cheskis B J, Edwards D P.
The role of extra-nuclear signaling actions of progesterone receptor in mediating
progesterone regulation of gene expression and cell cycle.
Mol Endocrinol.
2006(November);
30
, (Epub ahead of print)
- 105
Lim C S, Baumann C T, Hutun H et al..
Differential localization and activity of the -A and -B forms of the human progesterone
receptor using green fluorescent protein chimeras.
Mol Endocrinol.
1999;
13
366-375
- 106
Ballare C, Uhrig M, Betchtold T et al..
Two domains of the progesterone receptor interact with the estrogen receptor and are
required for progesterone activation of the c-Src/Erk pathway in mammalian cells.
Mol Cell Biol.
2003;
23
1994-2008
- 107
Proietti C, Salatino M, Rosemblit C et al..
Progestins induce transcriptional activation of signal transducer and activator of
transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells.
Mol Cell Biol.
2005;
25
4826-4840
- 108
Migliaccio A, Castoria G, Di Domenico M et al..
Steroid-induced androgen receptor-oestradiol receptor-β-Src complex triggers prostate
cancer cell proliferation.
EMBO J.
2000;
19
5406-5417
- 109
Migliaccio A, Domenico M D, Castoria G et al..
Steroid receptor regulation of epidermal growth factor signaling through Src in breast
and prostate cancer cells: steroid antagonist action.
Cancer Res.
2005;
65
10585-10593
- 110
Migliaccio A, Domenico M D, Castoria G et al..
Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex
in MCF-7 cells.
EMBO.
1996;
15
1292-1300
- 111
Endoh H, Sasaki H, Maruyama K et al..
Rapid activation of MAP kinase by estrogenin the bone cell line.
Biochem Biophys Res Commun.
1997;
235
99-102
- 112
Bi R, Broutman G, Foy M R, Thompson R F, Baudry M.
The tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple
effects of estrogen in hippocampus.
Proc Natl Acad Sci USA.
2000;
97
3602-3607
- 113
Di Domenico M, Castoria G, Bilancio A, Migliaccio A, Auricchio F.
Estradiol activation of human colon carcinoma-derived Caco-2 cell growth.
Cancer Res.
1996;
56
4516-4521
- 114
Nguyen T-V, Yao M, Pike C J.
Androgen activates mitogen-activated protein kinase signaling: role in neuroprotection.
J Neurochem.
2005;
94
1639-1651
- 115
Razandi M, Pedram A, Levin E R.
Estrogen signals to the preservation of endothelial cell from and function.
J Biol Chem.
2000;
275
38540-38546
- 116
Seval Y, Cakmak H, Kayisli U A, Arici A.
Estrogen-mediate regulation of p38 mitogen-activated protein kinase in human endometrium.
J Clin Endocrinol Metab.
2006;
91
2349-2357
- 117
Razandi M, Pedram A, Levin E R.
Plasma membrane estrogen receptor signal to antiapoptosis in breast cancer.
Mol Endocrinol.
2000;
14
1434-1447
- 118
Funaki M, Katagiri H, Inukai K, Kikuchi M, Asano T.
Structure and function of phosphatidylinositol-3,4 kinase.
Cell Signal.
2000;
12
135-142
- 119
Simoncini T, Hafezi-Moghadam A, Brazil D P, Ley K, Chin W W, Liao J K.
Interaction of oestrogen receptor with the regulatory subunit of phosphotidylinositol-3-OH
kinase.
Nature.
2000;
407
538-541
- 120
Castoria G, Migliaccio A, Bilancio A et al..
PI3 kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated
MCF-7 cells.
EMBO J.
2001;
20
6050-6059
- 121
Haynes M P, Li L, Sinha D et al..
Src kinase mediates phosphatidylinositol 3-kinase/Akt-dependent rapid endothelial
nitric-oxide synthase activation by estrogen.
J Biol Chem.
2003;
278
2118-2123
- 122
Sun M, Yang L, Feldman R I et al..
Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction
of p85α, androgen receptor and Src.
J Biol Chem.
2003;
278
42992-43000
- 123
Duan R, Xie W, Li X, McDougal A, Safe S.
Estrogen regulation of c-fos gene expression through phosphotidylinositol-3-kinase
dependent activation of serum response factor in MCF-7 breast cancer cells.
Biochem Biophys Res Commun.
2002;
294
384-394
- 124
Chen Y H, Lee M J, Chang H H, Hung P F, Kao Y H.
17 beta-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the
estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-alpha
pathways.
Endocrinology.
2006;
147
4496-4504
- 125
Faivre E, Skildum A, Pierson-Mullany L, Lange C A.
Integration of progesterone receptor mediated rapid signaling and nuclear actions
in breast cancer cell models: role of mitogen-activated protein kinases and cell cycle
regulators.
Steroids.
2005;
70
418-426
- 126
Faivre E J, Lange C A.
Progesterone receptor upregulate Wnt-1 to induce EGFR-transactivation of c-Src dependent
sustained activation of Erk 1/2 MAP kinase in breast cancer cells.
Mol Cell Biol.
2006;
27
466-480
- 127
Saitoh M, Ohmichi M, Takahashi H et al..
Medroxyprogesterone acetate induces cell proliferation through up-regulation of cyclin
D1 expression via phosphatidylinositol 3-kinase/Akt/nuclear factor-kappaB cascade
in human breast cancer cells.
Endocrinology.
2005;
146
4917-4925
- 128
Shah Y M, Rowan B G.
The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells
through phosphorylation-dependent stabilization of estrogen receptor (alpha) promoter
interaction and elevated steroid receptor coactivator 1 activity.
Mol Endocrinol.
2005;
19
732-748
- 129
Dutertre M, Smith C L.
Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding
protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in
the A/B region depends on other receptor domains.
Mol Endocrinol.
2003;
17
1296-1314
- 130
Wu R C, Qin J, Yi P et al..
Selective phosphorylations of the SRC-3/AIBI coactivator integrate genomic responses
to multiple cellular signaling pathways.
Mol Cell.
2004;
15
937-949
- 131
Harrington W R, Kim S H, Funk C C et al..
Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic
versus genomic pathways of estrogen action.
Mol Endocrinol.
2006;
20
491-502
Viroj BoonyaratanakornkitPh.D.
Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor
Plaza
MS-130, Houston, TX 77030
Email: virojb@bcm.tmc.edu