Zusammenfassung
Die molekulare Bildgebung von Kleintieren hat in den letzten Jahren eine schnelle
Entwicklung durchlaufen. Ein Grund dafür ist, dass verschiedene Forschungsgebiete
davon profitieren können. Neben forschungstechnischen Gründen spielt dabei auch die
Reduzierung der Tierzahl aus ethischen und finanziellen Gründen eine Rolle. Durch
die nichtinvasiven Bildgebungsmethoden ist es möglich, ein Tier in einer Versuchsreihe
mehrmals zu untersuchen, ohne dass das Tier getötet werden muss. Dadurch ist es möglich,
im selben Tier die Entwicklung eines pathologischen Prozesses zu verfolgen. Die dabei
angewendeten radiologischen Methoden, wie die Magnetresonanztomografie oder Computertomografie,
aber auch die nuklearmedizinischen Methoden, wie die „Single Photon Emissions Computer
Tomography” oder „Positronen Emissions Tomography,” weisen Nachteile auf. Bei den
radiologischen Methoden ist die molekulare Aussage begrenzt, während die nuklearmedizinischen
Methoden darunter leiden, dass es schwierig ist einen erhöhten Uptake einer anatomischen
Lokalisation zuzuordnen. Das führt dazu, dass die Fusion der Methoden in vielen Fällen
zu einem zusätzlichen Gewinn an Informationen führt. In dieser Übersichtsarbeit sollen
die heutigen Möglichkeiten kombinierter Bildgebung und deren Vorteile aber auch die
Nachteile aufgezeigt werden.
Abstract
Molecular imaging of small animals has made considerable progress in the last years.
Various research fields are interested in imaging small animals due to the lower numbers
of animals per experiment. This has advantages with respect to financial, ethical
and research aspects. Non-invasive imaging allows examination of one animal several
times during the same experiment. This makes it possible to follow a pathological
process in the same animal over time. However, the radiological methods used such
as magnetic resonance imaging or computed tomography as well as the nuclear medicine
methods such as single photon emission computed tomography or positron emission tomography
suffer from disadvantages. Molecular aspects are limited in the radiological methods
while anatomical localization is difficult in nuclear medicine. The fusion of these
methods leads to additional information. This review shows today’s possibilities with
their advantages as well as disadvantages.
Key words
MR imaging - radionuclide imaging - SPECT - animal investigations - CT - PET CT
Literatur
1
Gluer C C, Barkmann R, Hahn H K. et al .
Parametric biomedical imaging-what defines the quality of quantitative radiological
approaches?.
Fortschr Röntgenstr.
2006;
178
1187-1201
2
Lauterbur P C.
All science is interdisciplinary - from magnetic moments to molecules to men (Nobel
lecture).
Angew Chem Int Ed Engl.
2005;
44
1004-1011
3
Lauterbur P.
Image formation of induced local interactions: examples employing NMR.
Nature.
1973;
242
190-191
4
Alfke H, Kohle S, Maurer E. et al .
Analysis of mice tumor models using dynamic MRI data and a dedicated software platform.
Fortschr Röntgenstr.
2004;
176
1226-1231
5
Dubowitz D J, Tyszka J M, Sewry C A. et al .
High resolution magnetic resonance imaging of the brain in the dy/dy mouse with merosin-deficient
congenital muscular dystrophy.
Neuromuscul Disord.
2000;
10
292-298
6
Fayad Z A, Fallon J T, Shinnar M. et al .
Noninvasive In vivo high-resolution magnetic resonance imaging of atherosclerotic
lesions in genetically engineered mice.
Circulation.
1998;
98
1541-1547
7
Jacobs R E, Ahrens E T, Dickinson M E. et al .
Towards a microMRI atlas of mouse development.
Comput Med Imaging Graph.
1999;
23
15-24
8
Maxwell R J, Nielsen F U, Breidahl T. et al .
Effects of combretastatin on murine tumours monitored by 31P MRS, 1H MRS and 1H MRI.
Int J Radiat Oncol Biol Phys.
1998;
42
891-894
9
Slawson S E, Roman B B, Williams D S. et al .
Cardiac MRI of the normal and hypertrophied mouse heart.
Magn Reson Med.
1998;
39
980-987
10
Heverhagen J T, Hahn H K, Wegmann M. et al .
Volumetric analysis of mice lungs in a clinical magnetic resonance imaging scanner.
MAGMA.
2004;
17
80-85
11
Simon G, drup-Link H, Vopelius-Feldt von J. et al .
MRT der Arthritis mit dem USPIO SH U 555 C: Optimierung des T1-Enhancements.
Fortschr Röntgenstr.
2006;
178
200-206
12
Hess A, Sergejeva M, Budinsky L. et al .
Imaging of hyperalgesia in rats by functional MRI.
Eur J Pain.
2007;
11
109-119
13
Bohm I, Traber F, Block W. et al .
Molekulare Bildgebung von Apoptose und Nekrose - Zellbiologische Grundlagen und Einsatz
in der Onkologie.
Fortschr Röntgenstr.
2006;
178
263-271
14
Graichen H, Lochmuller E M, Wolf E. et al .
A non-destructive technique for 3-D microstructural phenotypic characterisation of
bones in genetically altered mice: preliminary data in growth hormone transgenic animals
and normal controls.
Anat Embryol.
1999;
199
239-248
15
Kennel S J, Davis I A, Branning J. et al .
High resolution computed tomography and MRI for monitoring lung tumor growth in mice
undergoing radioimmunotherapy: correlation with histology.
Med Phys.
2000;
27
1101-1107
16
Paulus M J, Gleason S S, Kennel S J. et al .
High resolution X-ray computed tomography: an emerging tool for small animal cancer
research.
Neoplasia.
2000;
2
62-70
17
Balaban R S, Hampshire V A.
Challenges in small animal noninvasive imaging.
ILAR J.
2001;
42
248-262
18
Behr T M, Gotthardt M, Becker W. et al .
Radioiodination of monoclonal antibodies, proteins and peptides for diagnosis and
therapy. A review of standardized, reliable and safe procedures for clinical grade
levels kBq to GBq in the Gottingen/Marburg experience.
Nuklearmedizin.
2002;
41
71-79
19
Stein R, Govindan S V, Mattes M J. et al .
Improved iodine radiolabels for monoclonal antibody therapy.
Cancer Res.
2003;
63
111-118
20
Beekman F, Have van der F.
The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging.
Eur J Nucl Med Mol Imaging.
2007;
34
151-161
21
Cherry S R.
The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons) - advances in PET
imaging technology.
J Nucl Med.
2006;
47
1735-1745
22
Massoud T F, Gambhir S S.
Molecular imaging in living subjects: seeing fundamental biological processes in a
new light.
Genes Dev.
2003;
17
545-580
23
Jacobs R E, Cherry S R.
Complementary emerging techniques: high-resolution PET and MRI.
Curr Opin Neurobiol.
2001;
11
621-629
24
Pichler B J, Judenhofer M S, Catana C. et al .
Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI.
J Nucl Med.
2006;
47
639-647
25
Catana C, Wu Y, Judenhofer M S. et al .
Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible
PET scanner.
J Nucl Med.
2006;
47
1968-1976
26
Del Guerra A, Belcari N.
Advances in animal PET scanners.
Q J Nucl Med.
2002;
46
35-47
27
Beyer T, Townsend D W, Brun T. et al .
A combined PET/CT scanner for clinical oncology.
J Nucl Med.
2000;
41
1369-1379
28
Deroose C M, DE A, Loening A M. et al .
Multimodality Imaging of Tumor Xenografts and Metastases in Mice with Combined Small-Animal
PET, Small-Animal CT, and Bioluminescence Imaging.
J Nucl Med.
2007;
48
295-303
29
Muller C, Bruhlmeier M, Schubiger P A. et al .
Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in
vivo.
J Nucl Med.
2006;
47
2057-2064
30
Gotthardt M, Lalyko G, Eerd-Vismale van J. et al .
A new technique for in vivo imaging of specific GLP-1 binding sites: First results
in small rodents.
Regul Pept.
2006;
137
162-167
31
Wild D, Behe M, Wicki A. et al .
Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1
(GLP-1) receptor targeting.
J Nucl Med.
2006;
47
2025-2033
32
Grimm J, Wunder A.
Molekulare Bildgebung: Stand der Forschung.
Fortschr Röntgenstr.
2005;
177
326-337
Dr. Martin Behe
Klinik für Nuklearmedizin, Philipps-Universität Marburg
Baldingerstraße
35043 Marburg
Phone: ++49/64 21/2 86 28 08
Fax: ++49/64 21/2 86 28 99
Email: behe@staff.uni-marburg.de