Planta Med 2006; 72(15): 1407-1414
DOI: 10.1055/s-2006-951720
Original Paper
Physiology and in vitro Biotechnology
© Georg Thieme Verlag KG Stuttgart · New York

Growing Environment and Nutrient Availability Affect the Content of Some Phenolic Compounds in Echinacea purpurea and Echinacea angustifolia

Youbin Zheng1 , Mike Dixon1 , Praveen K. Saxena2
  • 1Controlled Environment Systems Research Facility, Department of Environment Biology, University of Guelph, Guelph, Ontario, Canada
  • 2Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
Further Information

Publication History

Received: December 2, 2005

Accepted: September 11, 2006

Publication Date:
20 October 2006 (online)

Abstract

Medicinal plant production is different from other agricultural production systems in that the plants are grown for the production of specific phytochemical(s) for human use. To address this need, a Good Manufacturing Practice (GMP)-compliant, controlled-environment production system was developed for production of Echinacea purpurea and Echinacea angustifolia. Within the prototype facility, the growing systems, nutrient availability, water and physical environment were highly controlled. The current study was designed to evaluate the effects of different hydroponic systems, nutrient solution NO3 -/NH4 + ratios and mild water stress on the content of some phenolic compounds in Echinacea plants. The deep-flow solution culture system in which the plant roots were continuously immersed in the nutrient solutions was optimum for the growth of E. purpurea. Higher concentrations of caftaric acid, cynarin and echinacoside were produced in E. angustifolia plants grown in the soil-based growing media while the plants grown in the deep-flow solution system had higher levels of cichoric acid. Altering the NO3 -/NH4 + ratio or limited water stress did not have any significant effect on the phytochemical content of Echinacea plants. Echinacea plants grown in the controlled environment systems had higher or similar amounts of cynarin, caftaric acid, echinacoside and cichoric acid as previously reported in the literature for both field-cultivated and wild-harvested Echinacea plants. This growing system offers the advantages of year-round crop production with minimal contamination by environmental pollutants and common microbes.

Abbreviations

D:deep-flow solution culture

P:hydroponic production system with pots containing Pro-Mix

S:hydroponic production system with pots containing sand

S:periodic water stress

W:well-watered

References

  • 1 Li T. Echinacea: Cultivation and medicinal value.  Horttechnology. 1998;  8 122-9
  • 2 Barrett B. Medicinal properties of Echinacea: A critical review.  Phytomedicine. 2003;  10 66-86
  • 3 Blumenthal M. The ABC clinical guide to herbs. New York; American Botanical Council 2003
  • 4 Barnes P M, Powell-Griner E, McFann K, Nahin R L. Complementary and alternative medicine use among adults: United States, 2002.  Adv Data. 2004;  343 1-19
  • 5 Caruso T J, Gwaltney J M. Treatment of the common cold with Echinacea: a structured review.  Clin Infect Dis. 2005;  40 807-10
  • 6 Barnes J, Anderson L A, Gibbons S, Phillipson J D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties.  J Pharm Pharmacol. 2005;  57 929-54
  • 7 Gilroy C M, Steiner J F, Byers T, Shapiro H, Georgian W. Echinacea and truth in labeling.  Arch Intern Med. 2003;  163 699-704
  • 8 Letchamo W, Polydeonny L V, Gladisheva N O, Arnason T J, Livesey J, Awang D VC. Factors affecting Echinacea quality. In: Janick J, Whipkey A, editors Trends in new crops and new uses. Alexandria; ASHS Press 2002: 514-21
  • 9 Small E, Catling P M. Canadian medicinal crops. Ottawa; NRC Research Press 1999
  • 10 Schulthess B H, Giger E, Baumann T W. Echinacea: Anatomy, phytochemical pattern and germination of the achene.  Planta Med. 1991;  57 384-8
  • 11 Raman P, Patino L C, Nair M G. Evaluation of metal and microbial contamination in botanical supplements.  J Agric Food Chem. 2004;  52 7822-7
  • 12 Kindscher K. Ethnobotany of purple coneflower (Echinacea angustifolia, Asteraceae) and other Echinacea species.  Econ Bot. 1989;  43 498-507
  • 13 Health Canada. At a glance: A regulatory framework for natural health products. Available at: http://www.hc-sc.gc.ca/dhp-mps/prodnatur/about-apropos/glance-apercu_e.html. Accessed October 16, 2004. 
  • 14 Zheng Y, Saxena P K, Dixon M. Greenhouse production of Echinacea purpurea (L.) and E. angustifolia using different growing media, NO3 -/NH4 + ratios and watering regimes.  Can J Plant Sci. 2006;  86 809-15
  • 15 Stuart D L, Wills R BH. Effect of drying temperature on alkylamide and cichoric acid concentrations of Echinacea purpurea .  J Agric Food Chem. 2001;  51 1608-10
  • 16 Bergeron C, Livesey J F, Awang D, Arnason J T, Rana J, Baum B R. et al . A quantitative HPLC method for the quality assurance of Echinacea products on the North American market.  Phytochem Anal. 2000;  11 207-15
  • 17 Perry E B, Burgess E J, Glennie V. Echinacea standardization: Analytical methods for phenolic compounds and typical levels in medicinal species.  J Agric Food Chem. 2001;  49 1702-6
  • 18 Hadacek F. Secondary metabolites as plant traits: Current assessment and future perspectives.  Crit Rev Plant Sci. 2002;  21 273-322
  • 19 Wolkart K, Gangemi J D, Turner R B, Bauer R. Enzymatic degradation of echinacoside and cynarine in Echinacea angustifolia root preparations.  Pharm Biol. 2004;  42 443-8.
  • 20 Wills R BH, Stuart D L. Alkylamide and cichoric acid levels in Echinacea purpurea grown in Australia.  Food Chem. 1999;  67 385-8
  • 21 Wills R BH, Stuart D L. Effect of handling and storage on alkylamides and cichoric acid in Echinacea purpurea .  J Sci Food Agric. 2000;  80 1402-6
  • 22 Binns S E, Livesey J F, Arnason J T, Baum B R. Phytochemical variation in Echinacea from roots and flowerheads of wild and cultivated populations.  J Agric Food Chem. 2002;  50 3673-87
  • 23 Binns S E, Arnason J T, Baum B R. Phytochemical variation within populations of Echinacea angustifolia (Asteraceae).  Biochem Syst Ecol. 2002;  30 837-54
  • 24 Dufault R J, Rushing J, Hassell R, Shepard B M, McCutcheon G, Ward B. Influence of fertilizer on growth and marker compound of field-grown Echinacea species and feverfew.  Sci Hortic. 2003;  98 61-9
  • 25 Qu L, Chen Y, Wang X, Scalzo R, Davis J M. Patterns of variation in alkamides and cichoric acid in roots and aboveground parts of Echinacea (L.) Moench.  Hortscience. 2005;  40 1239-42
  • 26 Berti M, Hevia F, Wilckens R, Fischer S. Effect of harvest season, nitrogen, phosphorus and potassium on root yield, echinacoside and alkylamides in Echinacea angustifolia L. in Chile.  Acta Hortic. 2002;  576 303-10
  • 27 Chrishaki N, Horiguchi T. Responses of secondary metabolism in plants to nutrient deficiency.  Soil Sci Plant Nutr. 1997;  43 987-91
  • 28 Gleadow R M, Woodrow I E. Defense chemistry of cyanogenic Eucalyptus cladocalyx seedlings is affected by water supply.  Tree Physiol. 2002;  22 939-47
  • 29 Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz.  Am J Enol Viticult. 2002;  53 261-7
  • 30 Estiarte M, Filella I, Serra J, Penuelas J. Effects of nutrient and water stress on leaf phenolic content of peppers and susceptibility to generalist herbivore (Helicoverpa armigera) (Hubner).  Oecologia. 1994;  99 387-91
  • 31 Ayaz F A, Kadioglu A, Turgut R. Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler.  Can J Plant Sci. 2000;  80 373-8
  • 32 Romero M P, Tovar M J, Girona J, Motilva M J. Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. Cv. Arbequina) grown under different deficit irrigation strategies.  J Agric Food Chem. 2002;  50 5349-54
  • 33 Gray D E, Pallardy S G, Garrett H E, Rottinghaus G E. Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots.  Planta Med. 2003;  69 50-5

Youbin Zheng

Bovey Building

Department of Environmental Biology

University of Guelph

Guelph

Ontario

Canada N1G 2W1

Phone: +1-519-824-4120 ext. 52741

Fax: +1-519-837-0442

Email: yzheng@uoguelph.ca

    >