Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand activated transcription
factor, belonging to the metazoan family of nuclear hormone receptors. Activation
of PPARγ increases the transcription of enzymes involved in primary metabolism, leading
to lower blood levels of fatty acids and glucose. Hence, PPARγ represents the major
target for the glitazone type of drugs currently being used clinically for the treatment
of type 2 diabetes. Furthermore, activators of PPARγ show beneficial anti-inflammatory
and anti-tumour effects. Utilizing a fusion receptor of the yeast Gal4-DNA binding
domain joined to the hinge region and ligand binding domain of the human PPARγ in
combination with a Gal4-driven luciferase reporter gene, cotransfected into Cos7 cells,
we tested sage and rosemary extracts prepared with 80 % aqueous ethanol for possible
PPARγ activation. This revealed that both extracts are capable of selectively activating
Gal4-PPARγ fusion receptor, in a concentration-dependent manner, with EC50 values of 22.8 ± 8.4 mg/L and 33.7 ± 7.3 mg/L for rosemary and sage, respectively.
Subsequent analysis of the characteristic constituents revealed the phenolic diterpene
compounds carnosol, present in both herbs, and carnosic acid to be active principles
of these extracts, showing EC50 values of 41.2 ± 5.9 μM and 19.6 ± 2.0 μM, respectively. Thus it can be concluded
that the glucose lowering effect reported recently for rosemary may be attributed
to PPARγ activation. Moreover, our observations may also explain the anti-inflammatory
and antiproliferative effects of both compounds published previously.
Key words
PPARγ - carnosic acid - carnosol -
Salvia officinalis L. - sage -
Rosmarinus officinalis L. - rosemary - Lamiaceae
References
1
Issemann I, Green S.
Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.
Nature.
1990;
347
645-50
2
Desvergne B, Wahli W.
Peroxisome proliferator-activated receptors: nuclear control of metabolism.
Endocr Rev.
1999;
20
649-88
3
Castrillo A, Tontonoz P.
Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and
inflammation.
Annu Rev Cell Dev Biol.
2004;
20
455-80
4
Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters J M, Gonzalez F J.
et al .
Peroxisome proliferator-activated receptor alpha negatively regulates the vascular
inflammatory gene response by negative cross-talk with transcription factors NF-kappaB
and AP-1.
J Biol Chem.
1999;
274
32 048-54
5
Eberhardt W, Akool el S, Rebhan J, Frank S, Beck K F, Franzen R. et al .
Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome
proliferator-activated receptor alpha agonists is indirect and due to a NO-mediated
reduction of mRNA stability.
J Biol Chem.
2002;
277
33 518-28
6
Jiang C, Ting A T, Seed B.
PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.
Nature.
1998;
391
82-6
7
Ricote M, Huang J T, Welch J S, Glass C K.
The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage
function.
J Leukoc Biol.
1999;
66
733-9
8
Ricote M, Li A C, Willson T M, Kelly C J, Glass C K.
The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage
activation.
Nature.
1998;
391
79-82
9
Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W.
Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone
receptors.
Cell.
1992;
68
879-87
10
Huang J T, Welch J S, Ricote M, Binder C J, Willson T M, Kelly C. et al .
Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase.
Nature.
1999;
400
378-82
11
Bongartz T, Coras B, Vogt T, Scholmerich J, Muller-Ladner U.
Treatment of active psoriatic arthritis with the PPARgamma ligand pioglitazone: an
open-label pilot study.
Rheumatology (Oxford).
2005;
44
126-9
12
Ellis C N, Varani J, Fisher G J, Zeigler M E, Pershadsingh H A, Benson S C. et al
.
Troglitazone improves psoriasis and normalizes models of proliferative skin disease:
ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte
proliferation.
Arch Dermatol.
2000;
136
609-16
13
Grommes C, Landreth G E, Heneka M T.
Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists.
Lancet Oncol.
2004;
5
419-29
14
Hauner H.
The mode of action of thiazolidinediones.
Diabetes Metab Res Rev.
2002;
18 (Suppl 2)
S10-5
15
Inzucchi S E.
Oral antihyperglycemic therapy for type 2 diabetes: scientific review.
JAMA.
2002;
287
360-72
16
Vogt T, Hafner C, Bross K, Bataille F, Jauch K W, Berand A. et al .
Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide
in patients with advanced malignant vascular tumors.
Cancer.
2003;
98
2251-6
17
Weindl G, Schafer-Korting M, Schaller M, Korting H C.
Peroxisome proliferator-activated receptors and their ligands: entry into the post-glucocorticoid
era of skin treatment?.
Drugs.
2005;
65
1919-34
18
Alarcon-Aguilar F J, Roman-Ramos R, Flores-Saenz J L, Aguirre-Garcia F.
Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants
in normal and alloxan-diabetic mice.
Phytother Res.
2002;
16
383-6
19
Erenmemisoglu A, Saraymen R, Ustun S.
Effect of a Rosmarinus officinalis leave extract on plasma glucose levels in normoglycaemic and diabetic mice.
Pharmazie.
1997;
52
645-6
20 Hiller K, Melzig M. Lexikon der Arzneipflanzen und Drogen. Heidelberg; Spektrum
Verlag 2003
21
Chan M M, Ho C T, Huang H I.
Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced
nitrite production.
Cancer Lett.
1995;
96
23-9
22
Danilenko M, Studzinski G P.
Enhancement by other compounds of the anti-cancer activity of vitamin D(3) and its
analogs.
Exp Cell Res.
2004;
298
339-58
23
Danilenko M, Wang Q, Wang X, Levy J, Sharoni Y, Studzinski G P.
Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin
D3 in leukemia cells but does not promote elevation of basal levels of intracellular
calcium.
Cancer Res.
2003;
63
1325-32
24
Danilenko M, Wang X, Studzinski G P.
Carnosic acid and promotion of monocytic differentiation of HL60-G cells initiated
by other agents.
J Natl Cancer Inst.
2001;
93
1224-33
25
Dorrie J, Sapala K, Zunino S J.
Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells.
Cancer Lett.
2001;
170
33-9
26
Fiander H, Schneider H.
Dietary ortho- phenols that induce glutathione S-transferase and increase the resistance of cells
to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms:
the alleviation of oxidative stress and the detoxification of mutagenic xenobiotics.
Cancer Lett.
2000;
156
117-24
27
Huang M T, Ho C T, Wang Z Y, Ferraro T, Lou Y R, Stauber K. et al .
Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic
acid.
Cancer Res.
1994;
54
701-8
28
Huang S C, Ho C T, Lin-Shiau S Y, Lin J K.
Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9
through down-regulating nuclear factor-kappa B and c-Jun.
Biochem Pharmacol.
2005;
69
221-32
29
Laughton M J, Evans P J, Moroney M A, Hoult J R, Halliwell B.
Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic
dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability.
Biochem Pharmacol.
1991;
42
1673-81
30
Lo A H, Liang Y C, Lin-Shiau S Y, Ho C T, Lin J K.
Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through
down-regulating nuclear factor-kappaB in mouse macrophages.
Carcinogenesis.
2002;
23
983-91
31
Martin D, Rojo A I, Salinas M, Diaz R, Gallardo G, Alam J. et al .
Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt
pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical
carnosol.
J Biol Chem.
2004;
279
8919-29
32
Offord E A, Mace K, Ruffieux C, Malnoe A, Pfeifer A M.
Rosemary components inhibit benzo[a ]pyrene-induced genotoxicity in human bronchial cells.
Carcinogenesis.
1995;
16
2057-62
33
Singletary K, MacDonald C, Wallig M.
Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a ]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation.
Cancer Lett.
1996;
104
43-8
34
Subbaramaiah K, Cole P A, Dannenberg A J.
Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent
and -independent mechanisms.
Cancer Res.
2002;
62
2522-30
35
Moran A E, Carothers A M, Weyant M J, Redston M, Bertagnolli M M.
Carnosol inhibits beta-catenin tyrosine phosphorylation and prevents adenoma formation
in the C57BL/6J/Min/+ (Min/+) mouse.
Cancer Res.
2005;
65
1097-104
36
Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F. et al .
Oleylethanolamide regulates feeding and body weight through activation of the nuclear
receptor PPAR-alpha.
Nature.
2003;
425
90-3
37
Takamura M, Sakurai M, Yamada E, Fujita S, Yachi M, Takagi T. et al .
Synthesis and biological activity of novel alpha-substituted beta-phenylpropionic
acids having pyridin-2-ylphenyl moiety as antihyperglycemic agents.
Bioorg Med Chem.
2004;
12
2419-39
38
Baricevic D, Sosa S, Della Loggia R, Tubaro A, Simonovska B, Krasna A. et al .
Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid.
J Ethnopharmacol.
2001;
75
125-32
39
del Bano M J, Lorente J, Castillo J, Benavente-Garcia O, del Rio J A, Ortuno A. et
al .
Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development
of leaves, flowers, stems, and roots of Rosmarinus officinalis . Antioxidant activity.
J Agric Food Chem.
2003;
51
4247-53
40
Lu Y, Foo L Y.
Polyphenolics of Salvia - a review.
Phytochemistry.
2002;
59
117-40
41
Shishodia S, Majumdar S, Banerjee S, Aggarwal B B.
Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents
through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with
down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1.
Cancer Res.
2003;
63
4375-83
42
Lee H K, Nam G W, Kim S H, Lee S H.
Phytocomponents of triterpenoids, oleanolic acid and ursolic acid, regulated differently
the processing of epidermal keratinocytes via PPAR-alpha pathway.
Exp Dermatol.
2006;
15
66-73
43
Liang Y C, Tsai S H, Tsai D C, Lin-Shiau S Y, Lin J K.
Suppression of inducible cyclooxygenase and nitric oxide synthase through activation
of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages.
FEBS Lett.
2001;
496
12-8
44
Huang T H, Peng G, Kota B P, Li G Q, Yamahara J, Roufogalis B D. et al .
Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: role
of lowering circulating lipids.
Br J Pharmacol.
2005;
145
767-74
45
Chen Y, Liu J, Yang X, Zhao X, Xu H.
Oleanolic acid nanosuspensions: preparation, in vitro characterization and enhanced hepatoprotective effect.
J Pharm Pharmacol.
2005;
57
259-64
46
Schwarz K, Ternes W.
Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis . I. Determination of phenolic diterpenes with antioxidative activity amongst tocochromanols
using HPLC.
Z Lebensm Unters Forsch.
1992;
195
95-8
47
Schwarz K, Ternes W.
Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis . II. Isolation of carnosic acid and formation of other phenolic diterpenes.
Z Lebensm Unters Forsch.
1992;
195
99-103
48
Schwarz K, Ternes W, Schmauderer E.
Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis . III. Stability of phenolic diterpenes of rosemary extracts under thermal stress
as required for technological processes.
Z Lebensm Unters Forsch.
1992;
195
104-7
49
Wellwood C R, Cole R A.
Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield.
J Agric Food Chem.
2004;
52
6101-7
50
Crosby M B, Svenson J, Gilkeson G S, Nowling T K.
A novel PPAR response element in the murine iNOS promoter.
Mol Immunol.
2005;
42
1303-10
51
Chinetti G, Griglio S, Antonucci M, Torra I P, Delerive P, Majd Z. et al .
Activation of proliferator-activated receptors alpha and gamma induces apoptosis of
human monocyte-derived macrophages.
J Biol Chem.
1998;
273
25 573-80
52
Park E Y, Cho I J, Kim S G.
Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione
S-transferase gene by the peroxisome proliferator-activated receptor-gamma and retinoid
X receptor heterodimer.
Cancer Res.
2004;
64
3701-13
53
Pighetti G M, Novosad W, Nicholson C, Hitt D C, Hansens C, Hollingsworth A B. et
al .
Therapeutic treatment of DMBA-induced mammary tumors with PPAR ligands.
Anticancer Res.
2001;
21
825-9
54
Subbaramaiah K, Lin D T, Hart J C, Dannenberg A J.
Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional
activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and
CREB-binding protein/p300.
J Biol Chem.
2001;
276
12 440-8
55
Tontonoz P, Nagy L, Alvarez J G, Thomazy V A, Evans R M.
PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL.
Cell.
1998;
93
241-52
56
Worley J R, Baugh M D, Hughes D A, Edwards D R, Hogan A, Sampson M J. et al .
Metalloproteinase expression in PMA-stimulated THP-1 cells. Effects of peroxisome
proliferator-activated receptor-gamma (PPAR gamma) agonists and 9-cis -retinoic acid.
J Biol Chem.
2003;
278
51 340-6
Prof. Dr. Manfred Schubert-Zsilavecz
Johann Wolfgang Goethe University Frankfurt
Institute of Pharmaceutical Chemistry/ZAFES
Max-von-Laue-Str. 9
60438 Frankfurt/Main
Germany
Phone: +49-69-7982-9339
Fax: +49-69-7982-9332
Email: schubert-zsilavecz@pharmchem.uni-frankfurt.de