Zusammenfassung
Demenzen sind die häufigsten psychischen Störungen im höheren Lebensalter, mit einer
weiteren Zunahme ist zu rechnen. Bei der Therapie sind Fortschritte zu verzeichnen,
dennoch sind den Behandlungserfolgen noch enge Grenzen gesetzt. Da sich demenzielle
Erkrankungen über einen langen Zeitraum und vermutlich auch unter dem Einfluss bestimmter
Lebensgewohnheiten entwickeln, gilt es, das Augenmerk auf präventive Interventionen
zu legen. Daten prospektiver Studien sprechen dafür, dass regelmäßige körperliche
Aktivität, die sich bereits im mittleren Lebensalter etabliert hat, von präventivem
Nutzen ist. Möglicherweise beinhaltet körperliches Training auch therapeutische antidementive
Effekte. Die Ergebnisse tierexperimenteller Untersuchungen weisen darauf hin, dass
körperliche Aktivität die Genexpression verschiedener neurotropher Faktoren induziert
und Einfluss auf die Gehirnvaskularisierung, die Neurotransmission, die Neurogenese
und die Neuroplastizität nimmt. Neuroplastische und neuroprotektive Effekte sind insbesondere
im Bereich des Hippocampus zu registrieren, was für demenzielle Erkrankungen von besonderer
Bedeutung sein könnte. Empirischen Daten sprechen dafür, dass regelmäßige körperliche
Aktivität ein Beitrag zur Gehirngesundheit/psychischen Gesundheit ist, experimentelle
Befunde weisen darauf hin über welche neurobiologischen Mechanismen diese positiven
Effekte entstehen könnten. Die Ergebnisse beider Forschungsrichtungen legen also nahe,
bei der Prävention und Therapie demenzieller Erkrankungen mehr Gewicht als bisher
auf körperliches Training zu legen.
Abstract
Dementias are among the most frequent geriatric mental disorders and will increase
in the decades to come. With regard to therapeutic strategies, some progress is seen
on the one hand, but its clinical impact appears to be limited still. Dementias usually
proceed over a longer period of time and are probably influenced by lifestyle factors
implying that preventive interventions are to be considered. Data from prospective
studies suggest that regular sportive activity having been established during midlife
can be of preventive value. Possibly this contains therapeutic antidementive effects
too. Results from animal experiments on the other hand led to the assumption that
physical activity induces increased gene expression of neurotrophic factors and influences
(thereby) cerebral vascularisation, neurotransmission, neuroneogenesis and neuroplasticity.
These effects were especially being seen in the hippocampal region which we hypothesize
to be of particular relevance with regard to dementias. Empirical data indicate that
regular physical activity may contribute to cerebral health - which is mental health;
experimental findings refer to modes of action which are supposed to be responsible
for those positive effects. This implies that more emphasis is to be placed on regular
workout as a therapeutic and - most of all - preventive antidementive means.
Schlüsselwörter
Demenz - Ausdauertraining - körperliche Aktivität - Therapie - Prävention
Key words
dementia - continuous workout - physical activity - therapy - prevention
Literatur
1
McDowell J.
Alzheimer's disease: insights from epidemiology.
Aging.
2001;
13
143-162
2
Black S E. et al .
Preventing dementia.
Can J Neurol Sci.
2001;
28 Suppl 1
56-66
3
Haan M N. et al .
Can dementia be prevented? Brain aging in a population-based context.
Ann Rev Public Health.
2004;
25
1-24
4
Kornhuber H H.
Prevention of dementia (including Alzheimer's disease).
Gesundheitswesen.
2004;
66
346-351
5
Holtzer R. et al .
Depressive symptoms in Alzheimer's disease: natural course and temporal relation to
function and cognitive status.
J Am Geriatr Soc.
2005;
53
2083-2089
6
Holtzer R. et al .
The rate of cognitive decline and risk of reaching clinical milestones in Alzheimer's
disease.
Arch Neurol.
2003;
60
137-1142
7
Terry R D. et al .
Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the
major correlate of cognitive impairment.
Ann Neurol.
1991;
30
572-580
8
Li G. et al .
A three-year follow-up study of age-related dementia in an urban area of Beijing.
Acta Psychiatr Scand.
1991;
83
99-104
9
Yoshitake T. et al .
Incidence and risk factor of vascular dementia and Alzheimer's disease in a defined
elderly Japanese population: the Hisayama Study.
Neurology.
1995;
45
1161-1168
10
Laurin D. et al .
Physical activity and risk of cognitive impairment and dementia in elderly persons.
Arch Neurol.
2001;
58
498-504
11
Rovio S. et al .
Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's
disease.
Lancet Neurol.
2005;
11
705-711
12
Larson E B. et al .
Exercise is associated with reduced risk of incident dementia among persons 65 years
of age and older.
Ann Intern Med.
2006;
144
73-81
13
Broe G A. et al .
Health habits and risk of cognitive impairment and dementia in old age: a prospective
study on the effect of exercise, smoking and alcohol comsumption.
Aust NZJ Public Health.
1998;
22
621-623
14
Wilson R S. et al .
Participation in cognitively stimulating activities and risk of incident Alzheimer's
disease.
JAMA.
2002;
287
742-748
15
Hollmann W. et al .
Körperliche Aktivität fördert Gehirngesundheit und -leistungsfähigkeit. Übersicht
und eigene Befunde.
Nervenheilkunde.
2003;
9
467-474
16
Hollmann W. et al .
Zur Biochemie des Gehirns bei muskulärer Arbeit.
Nervenheilkunde.
1998;
17
30-35
17 Scholz P. et al .Zerebrovaskuläre Erkrankungen. In: Reimers CD, Broocks A. Neurologie,
Psychiatrie und Sport. Stuttgart, New York: Thieme 2003: 72-84
18
Black J E. et al .
Learning causes synaptogenesis, whereas motor activity causes angiogenesis in cerebellar
cortex of adult rats.
Proc Natl Acad Sci USA.
1990;
87
5568-5572
19
Isaacs K R. et al .
Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical
activity and motor skill learning.
J Cereb Blood Flow Metab.
1992;
12
110-119
20
Jellinger K A.
Alzheimer disease and cerebrovascular pathology: an update.
J Neural Transm.
2002;
109
813-836
21
Roher A E. et al .
An association with great implications: Vascular pathology and Alzheimer's disease.
Alzheimer Dis Assoc Disord.
2006;
20
73-75
22
Dishman R K. et al .
Treadmill exercise training augments brain norepinephrine response to familiar and
novel stress.
Brain Res Bull.
2000;
52
337-342
23
Dunn A L. et al .
Brain norepinephrine and metabolites after treadmill training and wheel running in
rats.
Med Sci Sports Exerc.
1996;
28
204-209
24
Brosse A L. et al .
Exercise and the treatment of clinical depression in adults.
Sports Med.
2002;
32
741-760
25
Lawlor D A. et al .
The effectiveness of exercise as an intervention in the management of depression:
Systematic review and meta-regression analysis of randomised trials.
BMJ.
2001;
322
1-8
26
Cotman C W. et al .
Exercise enhances and protects brain function.
Exerc Sport Sci Rev.
2002;
30
75-79
27
Russo-Neustadt A A. et al .
Physical activity and antidepressant treatment potentiate the expression of specific
brain-derived neurotrophic factor transcripts in the rat hippocampus.
Neuroscience.
2000;
101
305-312
28
Cotman C W. et al .
Exercise: a behavioural intervention to enhance brain health and plasticity.
Trends in Neurosciences.
2002;
25
295-301
29
Gomez-Pinilla F. et al .
Physical exercise induces FGF-2 and its mRNA in the hippocampus.
Brain Res.
1997;
764
1-8
30
Neeper S A. et al .
Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth
factor in rat brain.
Brain Res.
1996;
726
49-56
31
Tong L. et al .
Effect of exercise on gene-expression profile in the rat hippocampus.
Neurobiol Dis.
2000;
8
1046-1056
32
Praag H van. et al .
Running enhances neurogenesis, learning and long-term potentiation in mice.
Proc Natl Acad Sci USA.
1995;
96
13 427-13 431
33
Sze C I. et al .
Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer's
disease brains.
J Neurol Sci.
2000;
175
81-90
34
Berchtold N L. et al .
Estrogen and exercise interact to regulate brain-derived neurotrophic factor m-RNA
and protein expression in the hippocampus.
Eur J Neurosci.
2001;
14
1992-2002
35
Carro E J. et al .
Circulating insulin-like growth factor I mediates the protective effects of physical
exercise against brain insults of different etiology and anatomy.
J Neurosci.
2001;
21
5678-5684
36
Bjornebekk A. et al .
The antidepressant effect of running is associated with increased hippocampal cell
proliferation.
Int J Neuropsychopharmacol.
2005;
8
357-368
37
Eriksson P S. et al .
Neurogenesic in the adult human hippocampus.
Nat Med.
1998;
4
1313-1317
38
Neumann N U, Frasch K.
Biologische Mechanismen antidepressiver Wirksamkeit von körperlicher Aktivität.
Psychoneuro.
2005;
31
513-518
39
Saxena S. et al .
Mental health benefits of physical activity.
Journal of Mental Health.
2004;
14
445-451
40 World Health Organization .Reducing risks, promoting healthy life. Geneva: World
health report 2002
PD Dr. med. Norbert-Ullrich Neumann
Abt. Allgemeine Psychiatrie und Psychotherapie des BKH Günzburg an der Donau-Ries-Klinik
Neudegger Allee 6
86609 Donauwörth
Email: norbert.neumann@bkh-guenzburg.de