Minim Invasive Neurosurg 2006; 49(3): 168-172
DOI: 10.1055/s-2006-944239
Original Article
© Georg Thieme Verlag Stuttgart · New York

The Role of Intraoperative Monitoring of Oculomotor and Trochlear Nuclei -Safe Entry Zone to Tegmental Lesions

H.  Ishihara1 , M.  Bjeljac1 , D.  Straumann2 , Y.  Kaku1 , P.  Roth1 , Y.  Yonekawa1
  • 1Department of Neurosurgery, University Hospital of Zurich, Zurich, Switzerland
  • 2Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
Further Information

Publication History

Publication Date:
18 July 2006 (online)

Abstract

Objective: A safe entry zone to tegmental lesions was identified based on intraoperative electrophysiological findings, the compound muscle action potentials (CMAP) from the extraocular muscles, and anatomic considerations. This entry zone is bordered caudally by the intramesencephalic path of the trochlear, laterally by the spinothalamic tract, and rostrally by the caudal margin of the brachium of the superior colliculus. Methods: Four intrinsic midbrain lesions were operated upon via the safe entry zone using the infratentorial paramedian supracerebellar approach. All lesions involved the tegmentum and included an anaplastic astrocytoma, a metastatic brain tumor, a radiation necrosis, and a cavernous angioma. CMAP were bilaterally monitored from the inferior recti (for oculomotor function) and superior oblique (for trochlear nerve function) muscles. Results: In three of four cases, CMAP related to the oculomotor nerve were obtained upon stimulation at the cavity wall after removal of the tumor. Stimulation at the surface of the quadrigeminal plate, however, did not cause any CMAP response. Using this monitoring as an indicator, the lesions were totally removed. Conclusions: In the surgery of tegmental lesions, CMAP monitoring from extraocular muscles is particularly helpful to prevent damage to crucial neural structures during removal of intrinsic lesions, but less so to select the site of the medullary incision. The approach via the lateral part of the colliculi is considered to be a safe route to approach the tegmental lesions.

References

  • 1 Moller A R, Jannetta P J. Preservation of facial function during removal of acoustic neuromas. Use of monopolar constant-voltage stimulation and EMG.  J Neurosurg. 1984;  61 757-760
  • 2 Sekhar L N, Moller A R. Operative management of tumors involving the cavernous sinus.  J Neurosurg. 1986;  64 879-889
  • 3 Kyoshima K, Kobayashi S, Gibo H, Kuroyanagi T. A study of safe entry zones via the floor of the fourth ventricle for brain-stem lesions.  J Neurosurg. 1993;  78 987-993
  • 4 Matsushima T, Rhoton A L, Lenkey C. Microsurgery of the fourth ventricle: Part 1. Microsurgical anatomy.  Neurosurgery. 1982;  11 631-667
  • 5 Strauss C, Lutjen-Drecoll E, Fahlbusch R. Pericollicular surgical approaches to the rhomboid fossa. Part I. Anatomical basis.  J Neurosurg. 1997;  87 893-899
  • 6 Strauss C, Romstöck J, Nimsky C, Fahlbusch R. Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation.  J Neurosurg. 1993;  79 393-399
  • 7 Bognar L, Fischer C, Turjman F, Michel F, Villanyi E, Mottolese C, Guyotat J, Lapras C. Tectal plate gliomas. Part III: Apparent lack of auditory consequences of unilateral inferior collicular lesion due to localized glioma surgery.  Acta Neurochir (Wien). 1994;  127 161-165
  • 8 Kaku Y, Yonekawa Y, Taub E. Transcollicular approach to intrinsic tectal lesions.  Neurosurgery. 1999;  44 338-344
  • 9 Mansour A M, Reinecke R D. Central trochlear palsy.  Surv Ophtalmol. 1986;  30 279-297
  • 10 McHaffie J G, Stein B E. Eye movements evoked by electrical stimulation in the superior colliculus of rats and hamsters.  Brain Res. 1982;  247 243-253
  • 11 Everling S, Pare M, Dorris M C, Munoz D P. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior.  J Neurophysiol. 1998;  79 511-528
  • 12 Gandhi N J, Keller E L. Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey.  J Neurophysiol. 1997;  78 2221-2225
  • 13 Fukushima K, Kaneko C RS, Fuchs A F. The neuronal substrate of integration in the oculomotor system.  Prog Neurobiol. 1992;  39 609-639
  • 14 Kaneko C RS, Fukushima K. Discharge characteristics of vestibular saccade neurons in alert monkeys.  J Neurophysiol. 1998;  79 835-847
  • 15 Suzuki Y, Buttner-Ennever J A, Straumann D, Hepp K, Hess B J, Henn V. Deficits in torsional and vertical rapid eye movements and shift of Listing's plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus.  Exp Brain Res. 1995;  106 215-232
  • 16 Helmchen C, Rambold H, Fuhry L, Buttner U. Deficits in vertical and torsional eye movements after uni- and bilateral muscimol inactivation of the interstitial nucleus of Cajal of the alert monkey.  Exp Brain Res. 1998;  119 436-452
  • 17 Ogata N, Yonekawa Y. Paramedian supracerebellar approach to the upper brain stem and peduncular lesions.  Neurosurgery. 1997;  40 101-105
  • 18 Rhoton A L. Tentrial incisura.  Neurosurgery. 2000;  47 S131-153
  • 19 Vishteh A G, David C A, Marciano F F, Coscarella E, Spetzler R F. Extreme lateral supracerebellar infratentorial approach to the posterolateral mesencephalon: Technique and clinical experience.  Neurosurgery. 2000;  46 384-389
  • 20 Eisner W, Schmid U D, Reulen H J, Oeckler R, Olteanu-Nerbe V, Gall C, Kothbauer K. The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery.  Neurosurgery. 1995;  37 255-265
  • 21 Asanuma H, Arnold A P. Noxious effects of excessive currents used for intracortical microstimulation.  Brain Res. 1975;  96 103-107
  • 22 Tehovnik E J. Electrical stimulation of neural tissue to evoke behavioral responses.  J Neurosci Methods. 1996;  65 1-17
  • 23 Silverstein H, Rosenberg S. Intraoperative facial nerve monitoring.  Otolaryngol Clin North Am. 1991;  24 709-725
  • 24 Hentall I D, Zorman G, Kansky S, Fields H L. Relations among threshold, spike height, electrode distance, and conduction velocity in electrical stimulation of certain medullospinal neurons.  J Neurophysiol. 1984;  51 968-977
  • 25 Stoney S D, Thompson W D, Asanuma H. Excitation of pyramidal tract cells by intracortical microstimulation: Effective extent of stimulating current.  J Neurophysiol. 1968;  31 659-669
  • 26 Sekiya T, Hatayama T, Shimamura N, Suzuki S. Intraoperative electrophysiological monitoring of oculomotor nuclei and their intramedullary tracts during midbrain tumor surgery.  Neurosurgery. 2000;  47 1170-1177

Hideyuki Ishihara, M. D. 

Department of Neurosurgery · Yamaguchi University School of Medicine

1-1-1 Minamikogushi

Ube

Yamaguchi 755-8505

Japan

Phone: +81/836/222295

Fax: +81/836/222294 ·

Email: sara20021209@yahoo.co.jp

    >