Planta Med 2006; 72(6): 484-487
DOI: 10.1055/s-2006-931579
Rapid Communication
© Georg Thieme Verlag KG Stuttgart · New York

Combined Effects of Physical Activity, Dietary Isoflavones and 17β-Estradiol on Movement Drive, Body Weight and Bone Mineral Density in Ovariectomized Female Rats

Torsten Hertrampf1 , Gisela H. Degen2 , Abdel Ait Kaid1 , Ute Laudenbach-Leschowsky1 , Jan Seibel1 , Ana Laura Di Virgilio2 , Patrick Diel1
  • 1Institut für Kreislaufforschung und Sportmedizin, Abt. Molekulare und Zelluläre Sportmedizin, Deutsche Sporthochschule Köln, Köln, Germany
  • 2Institut für Arbeitsphysiologie an der Universität Dortmund, Dortmund, Germany
Further Information

Publication History

Received: November 18, 2005

Accepted: February 23, 2006

Publication Date:
28 April 2006 (online)

Preview

Abstract

Reduced estrogen levels occurring during menopause in woman are accompanied by a variety of disorders, e. g., hot flushes, depressions, osteoporosis, increase of body weight, and reduced movement drive. In this study we investigated the combined effects of physical activity, estradiol substitution, and a phytoestrogen-rich diet on bone mineral density, increase of body weight, and movement drive in an animal model. Ovariectomized (OVX) female Wistar rats were either fed an isoflavone-rich diet (IRD) or substituted with 17β-estradiol (E2) for 3 months. Sham-operated rats (Sham) and vehicle-treated OVX animals served as controls. One half of the animals had the opportunity of voluntary wheel running. OVX rats displayed an eight times lower movement activity than Sham animals. E2 treatment, but not IRD, significantly increased the movement activity of OVX rats. During 3 months the lowest increase of body weight was observed in Sham animals, the highest rate in OVX animals. Along with running activity E2 treatment, but not IRD, also lowered the increase of body weight significantly compared to OVX animals. Bone mineral density (BMD) in the trabecular area of the tibia was strongly reduced in OVX rats compared to Sham animals. In contrast to IRD, E2 substitution resulted in a protection of BMD in this area compared to OVX animals. Our data demonstrate that body weight, movement drive, and BMD are positively influenced by E2. The steroid estrogen acts in the trabecular area of the tibia in a bone-protective manner, increases movement drive and antagonizes the increase of body weight. All these effects could not be observed in animals fed an isoflavone-rich diet.

Abbreviations

BMD:bone mineral density

Dai:daidzein

E2:17β-estradiol

EE:ethinylestradiol

ER:estrogen receptor

Gen:genistein

HRT:hormone replacement therapy

IRD:isoflavone-rich diet

OVX:ovariectomized

ROI:region of interest

References

Patrick Diel

Department of Molecular and Cellular Sports Medicine

Deutsche Sporthochschule Köln

Carl Diem Weg 6

50927 Cologne

Germany

Phone: +49-221-4982-5860

Fax: +49-221-4982-8370

Email: Diel@DSHS-koeln.de