Z Orthop Ihre Grenzgeb 2006; 144(2): 164-171
DOI: 10.1055/s-2006-921540
Kniegelenk

© Georg Thieme Verlag Stuttgart · New York

In-vitro-Untersuchung der Spannung des hinteren Kreuzbandes nach primärer Knieendoprothetik

Vergleich fixes versus mobiles DesignIn Vitro Investigation of Posterior Cruciate Ligament Strain Following Total Knee ArthroplastyComparison of Fixed Versus Mobile DesignT. Siebel1 , W. Käfer2
  • 1Orthopädische Klinik, Knappschaftskrankenhaus Püttlingen, Püttlingen
  • 2Orthopädische Universitätsklinik am RKU, Ulm
Further Information

Publication History

Publication Date:
19 April 2006 (online)

Zusammenfassung

Einleitung: Ziel der biomechanischen Kadaverstudie war es, die Spannung des hinteren Kreuzbandes (HKB) nach Implantation einer Knietotalendoprothese im Vergleich eines fixen und eines mobilen Designs zu untersuchen und dabei die Veränderung des tibialen Slope zu berücksichtigen. Material und Methodik: Acht Natural Knee-I (NK-I) Endoprothesen mit fixem Inlay und acht Low Contact Stress (LCS) Endoprothesen mit mobilen Meniskallagern wurden in humane Kadaverkniegelenke implantiert. Die Spannung des HKB wurde mit Dehnungsmessstreifen analysiert. Die Kniegelenkkinematik wurde mit einem Kniebelastungsprüfstand, der über alle sechs Freiheitsgrade des Kniegelenks verfügt, mit (300 Newton) und ohne Lastapplikation untersucht. Die Veränderung des tibialen Slope wurde radiologisch bestimmt. Die statistische Analyse erfolgte mittels Student-t-Test, Wilcoxon Rangsummen-Test und Spearman-Korrelationsanalyse. Ergebnisse: Postoperativ zeigte sich eine Zunahme des tibialen Slope um 2,1° (p = 0,14) bei der NK-I-Prothese bzw. 1,1° (p = 0,12) bei der LCS-Prothese. Die Analyse der HKB-Spannung nach Implantation der NK-I-Prothese zeigte mit (p = 0,74) und ohne Lastapplikation (p = 0,20) nur geringfügige Modifikationen, während es nach Implantation der LCS-Prothese im belasteten Zyklus zu einem signifikanten Spannungsabfall (p = 0,01) kam; unbelastet zeigte die LCS-Prothese eine nahezu unveränderte HKB-Spannung (p = 1,0). Die Korrelationsanalyse der Modifikation von tibialem Slope und HKB-Spannung zeigte einen substanziellen Zusammenhang bei der NK-I-Prothese (unbelastet rs = 0,70, belastet rs = 0,64), im Fall der LCS-Prothese allerdings nur einen geringen (unbelastet rs = - 0,43) bzw. keinen Zusammenhang (belastet rs = 0,01). Schlussfolgerung: Die NK-I-Endoprothese lässt ein nahezu unverändertes Spannungsmuster des HKB zu, was dem Postulat einer prinzipiellen Irregularität der Kreuzbandspannung nach Knieendoprothetik widerspricht. Das Ausmaß der Kreuzbandspannung wird wesentlich von der Interaktion zwischen Design der Endoprothese (u. a. Mobilität des Inlays) und funktioneller Rolle des HKB bestimmt.

Abstract

Aim: The aim of this biomechanical in vitro study was to assess posterior cruciate ligament (PCL) strain following two different total knee arthroplasty (TKA) designs (fixed versus mobile) with regard to modification of the tibial slope. Material and Methods: We investigated eight Natural Knee I (NK I) prosthesis with fixed bearing and eight Low Contact Stress (LCS) prosthesis with mobile meniscal bearings. TKA was performed using fresh frozen human cadaveric knee joints. PCL strain was measured with implantable force transducers. Knee kinematic assessment was made with a load of 300 Newton and without load using a six-degrees-of-freedom testing device. Modification of the tibial slope was analysed radiographically. Statistical analysis was performed using Student's t test, Wilcoxon rank sum test, and the Spearman coefficient of correlation. Results: Assessment of the tibial slope showed a non-significant increase of 2.1° (p = 0.14) following TKA using the NK I, and of 1.1° (p = 0.12) using the LCS, respectively. Analysis of PCL strain following implantation of the NK I prosthesis revealed non-significant alterations both with (p = 0.74) and without load (p = 0.20). Concerning the LCS prosthesis, a significant decrease in PCL strain was seen with load (p = 0.01), whereas non-significant modifications were measured without load (p = 1.0). The modified tibial slope and modified PCL strain following LCS TKA showed no (with load: rs = 0.01) and modest correlation (without load: rs = - 0.43), respectively, whereas it was substantial following NK I TKA (with load: rs = 0.64, without load: rs = 0.70). Conclusion: As the NK I prosthesis allows PCL tension to be close to normal as the knee flexes, it can be stated that regular PCL tension after TKA is restorable and, moreover, it can be hypothesised that the effected tension of the PCL mainly depends on the interaction between design of the implant (fixed/mobile) and the functional role of the PCL.

Literatur

  • 1 Laskin R S. The posterior cruciate ligament in total knee replacement.  Knee. 1995;  2 139-144
  • 2 Huang C H, Lee Y M, Liau J J, Cheng C K. Comparison of muscle strength of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty.  J Arthroplasty. 1998;  13 779-783
  • 3 Müller W. Das Knie. Form, Funktion und ligamentäre Wiederherstellungschirurgie. Springer, Berlin, Heidelberg, New York 1982
  • 4 Friedrich N F, O'Brien W R. Zur funktionellen Anatomie der Kreuzbänder. In: Jakob RP, Steubli HU (eds). Kniegelenk und Kreuzbänder. Springer, Berlin, Heidelberg, New York 1990; 80-95
  • 5 Andersen H N, Dyhre-Poulsen P. The anterior cruciate ligament does play a role in controlling axial rotation in the knee.  Knee Surg Sports Traumatol Arthrosc. 1997;  5 145-149
  • 6 Del Valle M E, Harwin S F, Maestro A, Murcia A, Vega J A. Immunohistochemical analysis of mechanoreceptors in the human posterior cruciate ligament: a demonstration of its proprioceptive role and clinical relevance.  J Arthroplasty. 1998;  13 916-922
  • 7 Arima J, Whiteside L A, Martin J W, Miura H, White S E, McCarthy D S. Effect of partial release of the posterior cruciate ligament in total knee arthroplasty.  Clin Orthop. 1998;  353 194-202
  • 8 Sorger J I, Federle D, Kirk P G, Grood E, Cochran J, Levy M. The posterior cruciate ligament in total knee arthroplasty.  J Arthroplasty. 1997;  12 869-879
  • 9 Emodi G J, Callaghan J J, Pedersen D R, Brown T D. Posterior cruciate ligament function following total knee arthroplasty: the effect of joint line elevation.  Iowa Orthop J. 1999;  19 82-92
  • 10 Lewandowski P J, Askew M J, Lin D F, Hurst F W, Melby A. Kinematics of posterior cruciate ligament-retaining and -sacrificing mobile bearing total knee arthroplasties. An in vitro comparison of the New Jersey LCS meniscal bearing and rotating platform prostheses.  J Arthroplasty. 1997;  12 777-784
  • 11 Dennis D A, Komistek R D, Colwell C E. et al . In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis.  Clin Orthop. 1998;  356 47-57
  • 12 Incavo S J, Beynnon B D, Johnson C C, Churchill D L. Knee kinematics in genesis total knee arthroplasty. A comparison of different tibial designs with and without posterior cruciate substitution in cadaveric specimens.  Am J Knee Surg. 1997;  10 209-215
  • 13 Stiehl J B, Komistek R D, Dennis D A, Paxson R D, Hoff W A. Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty.  J Bone Joint Surg [Br]. 1995;  77 884-889
  • 14 Takatsu T, Itokazu M, Shimizu K, Brown T D. The function of posterior tilt of the tibial component following posterior cruciate ligament-retaining total knee arthroplasty.  Bull Hosp Jt Dis. 1998;  57 195-201
  • 15 Lotke P A, Corces A, Williams J L, Hirsch H S. Strain characteristics of the posterior cruciate ligament after total knee arthroplasty.  J Knee Surg. 1993;  6 104-107
  • 16 Incavo S J, Johnson C C, Beynnon B D, Howe J G. Posterior cruciate ligament strain biomechanics in total knee arthroplasty.  Clin Orthop. 1994;  309 88-93
  • 17 Dennis D A, Komistek R D, Stiehl J B, Walker S A, Dennis K N. Range of motion after total knee arthroplasty: the effect of implant design and weight-bearing conditions.  J Arthroplasty. 1998;  13 748-752
  • 18 Yamakado K, Worland R L, Jessup D E, Diaz-Borjon E, Pinilla R. Tight posterior cruciate ligament in posterior cruciate-retaining total knee arthroplasty: a cause of posteromedial subluxation of the femur.  J Arthroplasty. 2003;  18 570-574
  • 19 Lattanzio P J, Chess D G, MacDermid J C. Effect of the posterior cruciate ligament in knee-joint proprioception in total knee arthroplasty.  J Arthroplasty. 1998;  13 580-585
  • 20 Simmons S, Lephart S, Rubash H, Borsa P, Barrack R L. Proprioception following total knee arthroplasty with and without the posterior cruciate ligament.  J Arthroplasty. 1996;  11 763-768
  • 21 Shoji H, Wolf A, Packard S, Yoshino S. Cruciate retained and excised total knee arthroplasty. A comparative study in patients with bilateral total knee arthroplasty.  Clin Orthop. 1994;  305 218-322
  • 22 Tanzer M, Smith K, Burnett S. Posterior-stabilized versus cruciate-retaining total knee arthroplasty: balancing the gap.  J Arthroplasty. 2002;  17 813-819
  • 23 Udomkiat P, Meng B J, Dorr L D, Wan Z. Functional comparison of posterior cruciate retention and substitution knee replacement.  Clin Orthop. 2000;  378 192-201
  • 24 Singerman R, Dean J C, Pagan H D, Goldberg V M. Decreased posterior tibial slope increases strain in the posterior cruciate ligament following total knee arthroplasty.  J Arthroplasty. 1996;  11 99-103
  • 25 Imran A, O'Connor J J. Theoretical estimates of cruciate ligament forces: effects of tibial surface geometry and ligament orientations.  Proc Inst Mech Eng [H]. 1997;  211 425-439
  • 26 Griffin F M, Insall J N, Scuderi G R. Accuracy of soft tissue balancing in total knee arthroplasty.  J Arthroplasty. 2000;  15 970-973
  • 27 Siebel T, Käfer W. In vitro investigation of knee joint kinematics following cruciate retaining versus cruciate sacrificing total knee arthroplasty.  Acta Orthop Belg. 2003;  69 433-440
  • 28 Siebel T, Käfer W. Modification of the posterior cruciate ligament tension following total knee arthroplasty: comparison of the Genesis CR and LCS meniscal bearing prostheses.  Knee. 2004;  11 203-208
  • 29 Glos D L, Butler D L, Grood E S, Levy M S. In vitro evaluation of an implantable force transducer (IFT) in a patellar tendon model.  J Biomech Eng. 1993;  115 335-343
  • 30 Fox R J, Harner C D, Sakane M, Carlin G J, Woo S L. Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. A cadaveric study.  Am J Sports Med. 1998;  26 395-401
  • 31 Mutschler W. Anatomie und Biomechanik des Kniegelenkes. In: Burri C, Mutschler W (eds). Das Knie: Verletzungen, Verletzungsfolgen, Erkrankungen. Hippokrates, Stuttgart 1982; 9-19
  • 32 Sathasivam S, Walker P S. The conflicting requirements of laxity and conformity in total knee replacement.  J Biomech. 1999;  32 239-247
  • 33 Tsakonas A C, Polyzoides A J. Reduction of polyethylene in a congruent meniscal knee prosthesis. Experimental and clinical studies.  Acta Orthop Scand Suppl. 1997;  275 127-131
  • 34 Carlin G J, Livesay G A, Harner C D, Ishibashi Y, Kim H S, Woo S L. In-situ forces in the human posterior cruciate ligament in response to posterior tibial loading.  Ann Biomed Eng. 1996;  24 193-197
  • 35 Sakane M, Livesay G A, Fox R J, Rudy T W, Runco T J, Woo S L. Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee.  Knee Surg Sports Traumatol Arthrosc. 1999;  7 93-97
  • 36 O'Connor J J, Goodfellow J W. Theory and practice of meniscal knee replacement: designing against wear.  Proc Inst Mech Eng [H]. 1996;  210 217-222
  • 37 Kleinbart F A, Bryk E, Evangelista J, Scott W N, Vigorita V J. Histologic comparison of posterior cruciate ligaments from arthritic and age-matched knee specimens.  J Arthroplasty. 1996;  11 726-731
  • 38 Laskin R S. Total knee arthroplasty using an uncemented, polyethylene tibial implant. A seven-year follow-up study.  Clin Orthop. 1993;  288 270-276
  • 39 Laskin R S. The Genesis cemented modular total knee prosthesis: a 3-year follow-up study.  Knee. 1994;  1 46-53
  • 40 Wilson D R, Feikes J D, O'Connor J J. Ligaments and articular contact guide passive knee flexion.  J Biomech. 1998;  31 1127-1136

Dr. med. W. Käfer

Orthopädische Universitätsklinik am RKU

Oberer Eselsberg 45

89081 Ulm

Phone: 07 31/1 77 51 21

Fax: 07 31/1 77 11 03

Email: wolframkaefer@hotmail.com

    >