References and Notes
<A NAME="RY07105ST-1A">1a</A>
Heimgartner H.
Angew. Chem., Int. Ed. Engl.
1991,
30:
238
<A NAME="RY07105ST-1B">1b</A>
Williams RM.
Hendrix JA.
Chem. Rev.
1992,
92:
889
<A NAME="RY07105ST-1C">1c</A>
Duthaler RO.
Tetrahedron
1994,
50:
1539
<A NAME="RY07105ST-1D">1d</A>
Wirth T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
225
<A NAME="RY07105ST-1E">1e</A>
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
<A NAME="RY07105ST-1F">1f</A>
Cativiela C.
Dîaz-de-Villegas MD.
Tetrahedron: Asymmetry
1998,
9:
3517
<A NAME="RY07105ST-1G">1g</A>
Gibson SE.
Guillo N.
Tozer MJ.
Tetrahedron
1999,
55:
585
<A NAME="RY07105ST-1H">1h</A>
Cativiela C.
Dîaz-de-Villegas MD.
Tetrahedron: Asymmetry
2000,
11:
645
<A NAME="RY07105ST-2A">2a</A>
Ohfune Y.
Demura T.
Iwama S.
Matsuda H.
Namba K.
Shimamoto K.
Shinada T.
Tetrahedron Lett.
2003,
44:
5431
<A NAME="RY07105ST-2B">2b</A>
Andrei M.
Undheim K.
Tetrahedron: Asymmetry
2004,
15:
53
<A NAME="RY07105ST-2C">2c</A>
Watts J.
Benn A.
Flinn N.
Monk T.
Ramjee M.
Ray P.
Wang Y.
Quibell M.
Bioorg. Med. Chem.
2004,
12:
2903
<A NAME="RY07105ST-3A">3a</A>
Diels O.
Justus Liebigs Ann. Chem.
1922,
429:
1
<A NAME="RY07105ST-3B">3b</A>
Genet J.-P.
Greck C.
Lavergne D.
In Modern Amination Methods
Ricci A.
Wiley-VCH;
Weinheim, Germany:
2000.
Chap. 3.
<A NAME="RY07105ST-3C">3c</A>
Duthaler RO.
Angew. Chem. Int. Ed.
2003,
42:
975
<A NAME="RY07105ST-3D">3d</A>
Greck C.
Drouillat B.
Thomassigny C.
Eur. J. Org. Chem.
2004,
1377
<A NAME="RY07105ST-4A">4a</A>
List B.
J. Am. Chem. Soc.
2002,
124:
5656
<A NAME="RY07105ST-4B">4b</A>
Bøgevig A.
Juhl K.
Kumaragurubaran N.
Zhuang W.
Jørgensen KA.
Angew. Chem. Int. Ed.
2002,
41:
1790
<A NAME="RY07105ST-4C">4c</A>
Vogt H.
Vanderheiden S.
Bräse S.
Chem. Commun.
2003,
2448
<A NAME="RY07105ST-4D">4d</A>
Iwamura H.
Mathew SP.
Blackmond DG.
J. Am. Chem. Soc.
2004,
126:
11770
<A NAME="RY07105ST-5">5</A>
Kumaragurubaran N.
Juhl K.
Zhuang W.
Bøgevig A.
Jørgensen KA.
J. Am. Chem. Soc.
2002,
124:
6254
<A NAME="RY07105ST-6">6</A>
Juhl K.
Jørgensen KA.
J. Am. Chem. Soc.
2002,
124:
2420
<A NAME="RY07105ST-7">7</A>
Marigo M.
Juhl K.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
1367
<A NAME="RY07105ST-8A">8a</A>
Saaby S.
Bella M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
8120
<A NAME="RY07105ST-8B">8b</A>
Liu X.
Li H.
Deng L.
Org. Lett.
2005,
7:
167
<A NAME="RY07105ST-9A">9a</A>
Chowdari NS.
Barbas CF.
Org. Lett.
2005,
7:
867
<A NAME="RY07105ST-9B">9b</A>
Suri JT.
Steiner DD.
Barbas CF.
Org. Lett.
2005,
7:
3885
<A NAME="RY07105ST-10">10</A>
Pihko PM.
Pohjakallio A.
Synlett
2004,
2115
<A NAME="RY07105ST-11A">11a</A>
Okino T.
Hoashi Y.
Takemoto Y.
J. Am. Chem. Soc.
2003,
125:
12672
<A NAME="RY07105ST-11B">11b</A>
Okino T.
Hoashi Y.
Furukawa T.
Xu X.
Takemoto Y.
J. Am. Chem. Soc.
2005,
127:
119
<A NAME="RY07105ST-11C">11c</A>
Okino T.
Nakamura S.
Furukawa T.
Takemoto Y.
Org. Lett.
2004,
6:
625
<A NAME="RY07105ST-11D">11d</A>
Hoashi Y.
Okino T.
Takemoto Y.
Angew. Chem. Int. Ed.
2005,
44:
4032
<A NAME="RY07105ST-12A">12a</A>
Fuerst DE.
Jacobsen EN.
J. Am. Chem. Soc.
2005,
127:
8964
<A NAME="RY07105ST-12B">12b</A>
Vachal P.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
10012
<A NAME="RY07105ST-12C">12c</A>
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Tetrahedron Lett.
2004,
45:
5589
<A NAME="RY07105ST-12D">12d</A>
Berkessel A.
Cleemann F.
Mukherjee S.
Müller TN.
Lex J.
Angew. Chem. Int. Ed.
2005,
44:
807
<A NAME="RY07105ST-12E">12e</A>
Berkessel A.
Mukherjee S.
Cleemann F.
Müller TN.
Lex J.
Chem. Commun.
2005,
1898
<A NAME="RY07105ST-12F">12f</A>
Li B.-J.
Jiang L.
Liu M.
Chen Y.-C.
Ding L.-S.
Wu Y.
Synlett
2005,
603
<A NAME="RY07105ST-12G">12g</A>
Vakulya B.
Varga S.
Csampai A.
Soos T.
Org. Lett.
2005,
7:
1967
<A NAME="RY07105ST-12H">12h</A>
Wang J.
Li H.
Yu X.
Zu L.
Wang W.
Org. Lett.
2005,
7:
4293
For reviews on Brønsted acid catalysis, see:
<A NAME="RY07105ST-13A">13a</A>
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
<A NAME="RY07105ST-13B">13b</A>
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062
<A NAME="RY07105ST-13C">13c</A>
Bolm C.
Rantanen T.
Schiffers I.
Zani L.
Angew. Chem. Int. Ed.
2005,
44:
1758
For recent representative papers on Brønsted acid catalysts, see:
<A NAME="RY07105ST-13D">13d</A>
McDougal NT.
Schaus SE.
J. Am. Chem. Soc.
2003,
125:
12094
<A NAME="RY07105ST-13E">13e</A>
Nugent BM.
Yoder RA.
Johnston JN.
J. Am. Chem. Soc.
2004,
126:
3418
<A NAME="RY07105ST-13F">13f</A>
Thadani AN.
Stankovic AR.
Rawal VH.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5846
<A NAME="RY07105ST-13G">13g</A>
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
<A NAME="RY07105ST-13H">13h</A>
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2005,
127:
1080
<A NAME="RY07105ST-13I">13i</A>
Matsui K.
Takigawa S.
Sasai H.
J. Am. Chem. Soc.
2005,
127:
3680
<A NAME="RY07105ST-13J">13j</A>
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2005,
127:
9360
<A NAME="RY07105ST-14">14</A>
General Experimental Procedure.
To a stirred solution of 1,3-dicarbonyl compound 3 (0.11 mmol, 110 mol%) and urea catalyst 1b (4.0 mg, 0.010 mmol) in toluene (1 mL) was added di-tert-butyl azodicarboxylate (2a, 23.0 mg, 0.10 mmol) at the temperature described in Table
[2]
. The resulting yellow solution was stirred at the same temperature until the yellow
color of the solution disappeared. The reaction mixture was concentrated in vacuo
and the obtained residue was purified by silica gel column chromatography to give
the desired product 4.
All new compounds 4 gave satisfactory spectral data. Selected characterization data:
Compound 4f (Table
[2]
, entry 5): the enantioselectivity was determined to be 89% ee by chiral HPLC using
a Chiralpak OD-H column [hexane-i-PrOH = 95:5, 0.5 mL/min, λ = 210 nm, t
R(major) = 9.4 min, t
R(minor) = 11.8 min]. [α]D
25 +22.4 (c 0.33, CHCl3). IR (CHCl3): ν = 3370, 2936, 2253, 1726, 1240 cm-1. 1H NMR (500 MHz, CDCl3): δ = 6.40 (br s, 1 H), 2.60 (m, 1 H), 2.22 (m, 1 H), 1.93 (m, 1 H), 1.66 (m, 1 H),
1.49 (m, 6 H), 1.47 (s, 9 H), 1.46 (s, 9 H), 1.44 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 169.9, 156.5, 155.9, 155.5, 81.4, 60.3, 52.7, 52.5, 40.6, 39.4, 34.7, 30.3,
28.1, 28.0, 27.9, 25.7, 23.7. MS (FAB-): m/z (%) = 443 (80) [MH+], 275 (100). HRMS (FAB+): m/z calcd for [C22H39N2O7]+: 443.2757; found: 443.2763.
Compound 4g (Table
[2]
, entry 6): the enantioselectivity was determined to be 90% ee by chiral HPLC using
a Chiralpak AD-H column [hexane-EtOH = 90:10, 0.25 mL/min, λ = 254 nm, t
R
(major) = 25.4 min, t
R(minor) = 18.9 min]. [α]D
25 +50.9 (c 0.10, CHCl3). IR (CHCl3): ν = 3156, 2985, 2360, 1725, 1152 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.74 (m, 1 H), 7.60 (d, J = 6.41 Hz, 1 H), 7.48 (d, J = 7.63 Hz, 1 H), 7.35 (d, J = 7.93 Hz, 1 H), 6.73 (br s, 1 H), 4.20 (d, J = 16.8 Hz, 1 H), 3.75 (d, J = 16.5 Hz, 1 H), 1.49 (s, 9 H), 1.41 (s, 9 H), 1.29 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 171.2, 154.9, 154.2, 153.7, 135.9, 135.3, 133.6, 127.4, 126.0, 124.8, 82.6,
82.0, 81.4, 81.1, 60.3, 28.1, 27.8, 27.6. MS (FAB+): m/z (%) = 463 (70) [MH+], 295 (100). HRMS (FAB+): m/z calcd for [C24H35N2O7]+: 463.2444; found: 463.2440.