Minim Invasive Neurosurg 2005; 48(6): 361-364
DOI: 10.1055/s-2005-915637
Original Article
© Georg Thieme Verlag Stuttgart · New York

The Effects of Venous Ischaemia on the Subependymal and Choroid Plexus Morphology in Rat

K.  Aydın1 , C.  Çokluk1 , S.  Kaplan2 , B.  Sahin3
  • 1Department of Neurosurgery, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
  • 2Department of Histology and Embryology, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
  • 3Department of Anatomy, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
Further Information

Publication History

Publication Date:
23 January 2006 (online)

Abstract

Morphological changes of ependyma, subependyma and choroids plexus regions were evaluated after experimental anastomotic venous occlusion in twenty male Sprague-Dawley rats. In this model, small burr holes were made over the anterior and posterior anastomotic veins and after precisely locating these vessels, bipolar coagulation and microscissors were used to perform permanent occlusion. Three days later, rats were sacrificed by perfusion and fixation and specimens were evaluated by histopathological techniques. Morphological changes of ependymal, subependymal and choroids plexus cells were evaluated in operated and intact hemispheres and revealed cell proliferation in the subventricular zone adjacent to the territory of venous occlusion in the operated hemisphere as well as midline shift, brain oedema, subcortical petechial haemorrhage, brain infarction and hemispheric swelling. In conclusion, following anterior (the vein of Throlard) and posterior (the vein of Labbé) anastomotic vein occlusion, cell proliferation can be seen in the choroids plexus, ependymal and subependymal regions in rats. We conclude that these morphological changes might be part of a self-repairing mechanism in the brain.

References

  • 1 Kawaguchi T, Kawano T, Kaneko Y, Ooasa T, Masanori T, Ogasawara S. Classification of venous ischemia with MRI.  J Clin Neurosci. 2001;  8 (Suppl 1) 82-88
  • 2 Nakase H, Kakizaki T, Kazunori M, Hiramatsu K, Sakaki T. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Experimental study.  Neurosurgery. 1995;  37 280-286
  • 3 Benamer H TS. Cerebral venous thrombosis: anticoagulants or thrombolyic therapy?.  J Neurol Neurosurg Psychiatry. 2000;  69 427-430
  • 4 Fries G, Wallenfang T, Hennen J, Velthaus M, Heimann A, Schild H, Perneczky A, Kempski O. Occlusion of the pig superior sagittal sinus, bridging and cortical veins: multistep evolution of sinus-vein thrombosis.  J Neurosurg. 1992;  77 127-133
  • 5 Nakase H, Kempski O S, Heimann A, Takeshima T, Tintera J. Microcirculation after cerebral venous occlusion as assessed by laser Doppler scanning.  J Neurosurg. 1997;  87 307-314
  • 6 Forbes K PN, Pipe J G, Heiserman J E. Evidence for cytotoxic edema in the pathogenesis of cerebral venous infarction.  Am J Neuroradiol. 2001;  22 450-455
  • 7 Schaller B, Graf R, Weinbard K, Heiss W D. A new animal model of cerebral venous infarction: ligation of the posterior part of the superior sagittal sinus in the cat.  Swiss Med Wkly. 2003;  133 412-418
  • 8 Hirakawa M, Tamura A, Nagashima H, Nakayama H, Sano K. Disturbance of retention of memory after focal cerebral ischemia in rats.  Stroke. 1994;  25 2471-2475
  • 9 Ulrich P T, Kroppenstedt S, Heimann A, Kempski O. Laser Doppler scanning of local cerebral blood flow and reserve capacity and testing of motor and memory functions in a chronic 2-vessel occlusion model in rats.  Stroke. 1998;  29 2412-2420
  • 10 Doerfler A, Forsting M, Reith W, Heiland C SS, Schabitz W R, Kummer R V, Hacke W, Sartor K. Decompressive craniectomy in a rat model of malignant cerebral hemispheric stroke: experimental support for an aggressive therapeutic approach.  J Neurosurg. 1996;  85 853-859
  • 11 Krayenbuhl H, Yasargil M G. Cerebral angiography, 2nd edn. Stuttgart: Georg Thieme Verlag 1982: pp 181-235
  • 12 Yasargil M G. Microneurosurgery IV A. Stuttgart: Georg Thieme Verlag 1994: pp 109-114
  • 13 Cokluk C, Aydin K, Korkmaz A, Senel A, İyigun O, Onder A. A model of unilateral cerebral anterior and posterior anastomotic veins occlusion in the rat.  Minim Invas Neurosurg. 2005;  48 149-153
  • 14 Chiasson B J, Tropepe V, Morshead C M, Kooy D van der. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics.  J Neurosci. 1999;  19 4462-4471
  • 15 Goldman S A, Zukhar A, Barami K, Mikawa T, Niedzwiecki D. Ependymal/subependymal zone cells of postnatal and adult songbird brain generate both neurons and nonneuronal siblings in vitro and in vivo.  J Neurobiol. 1996;  30 505-520
  • 16 Goldman S A. Adult neurogenesis: from canaries to the clinic.  J Neurobiol. 1998;  36 267-286
  • 17 Li Y, Chen J, Choop M. Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats.  J Neurol Sci. 2002;  193 137-146
  • 18 Kitada M, Chakrabortty S, Matsumoto N, Taketomi M, Ide C. Differentiation of choroid plexus ependymal cells into the pre-lesioned spinal cord in mice.  Glia. 2001;  36 364-374

Keramettin Aydın, M. D. 

Department of Neurosurgery · Medical Faculty, Ondokuz Mayıs University ·

55139 Samsun ·

Turkey

Phone: +90-362-457-6000/3652 int.

Fax: +90-362-457-6041 ·

Email: kaydin@omu.edu.tr

    >