Fortschr Neurol Psychiatr 2005; 73: 32-37
DOI: 10.1055/s-2005-915546
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Pathophysiologische Grundlagen der Schizophrenie und deren Relevanz für die Psychopharmakotherapie

Pathophysiology of Schizophrenia and its Impact on PharmacotherapyC.  G.  Widschwendter1 , W.  W.  Fleischhacker1
  • 1Abteilung für Biologische Psychiatrie, Universitätsklinik für Psychiatrie, Medizinische Universität Innsbruck/Österreich
Prof. Fleischhacker hat finanzielle Forschungsunterstützung und Honorare von folgenden Firmen erhalten: Astra Zeneca, Bristol Myers Squibb, Eli Lilly, Janssen, Novartis, Organon, Otsuka, Pfizer, Sanofi-Synthelabo.
Further Information

Publication History

Publication Date:
04 November 2005 (online)

Zusammenfassung

Ungefähr 1 % der Bevölkerung erkrankt an Schizophrenie. Zu den Hauptsymptomen zählen Halluzinationen, Wahn, Denkarmut, emotionaler und sozialer Rückzug sowie kognitive Defizite. Obwohl neuere Antipsychotika mit breiterem Rezeptorprofil umfassendere Therapiemöglichkeiten bieten, wird ein zufriedenstellendes Therapieansprechen bei vielen Patienten nicht erreicht. Trotz intensiver Forschung sind die molekularbiologischen Grundlagen der Schizophrenie nicht genau geklärt. Auch wenn pharmakologische Studien, funktionelle bildgebende Verfahren und Genforschung auf Veränderungen glutamaterger, GABAerger und serotonerger Systeme hinweisen, kommt der Dopaminhypothese in der Therapie nach wie vor eine zentrale Rolle zu. Dieser Artikel gibt einen Überblick über die pathophysiologischen Grundlagen der Schizophrenie, deren Relevanz für die Psychopharmakologie sowie einen Ausblick auf potenziell erfolgversprechende Forschungsansätze.

Abstract

Schizophrenia is a severe psychiatric illness with a lifetime morbidity risk of around 1 %. Symptoms include hallucinations, delusions, poverty of thought and emotion and social withdrawal and cognitive deficits. Although newer antipsychotics affecting multiple neurotransmitter receptors facilitate therapy, many patients still do not achieve full response. Despite intensive study, the molecular etiology of schizophrenia remains enigmatic in many ways. The dopamine hypothesis of schizophrenia still plays an important role, although pharmacological studies, brain imaging analyses and genetic research indicate additional dysfunctions of glutamate, GABA and serotonin transmission. This article reviews the pathophysiological background of the disorder, its implications for pharmacological treatment and possible directions for future research.

Literatur

  • 1 Andreasen N C. The evolving concept of schizophrenia: from Kraepelin to the present and future.  Schizophr Res. 1997;  28 (2 - 3) 105-109
  • 2 Meltzer H Y, McGurk S R. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia.  Schizophr Bull. 1999;  25 (2) 233-255
  • 3 Andreasen N C. Pieces of the schizophrenia puzzle fall into place.  Neuron. 1996;  16 (4) 697-700
  • 4 Harrison P J. The neuropathology of schizophrenia. A critical review of the data and their interpretation.  Brain. 1999;  122 ( Pt 4) 593-624
  • 5 Os J van. Is there a continuum of psychotic experiences in the general population?.  Epidemiol Psichiatr Soc. 2003;  12 (4) 242-252
  • 6 Meltzer H Y, Stahl S M. The dopamine hypothesis of schizophrenia: a review.  Schizophr Bull. 1976;  2 (1) 19-76
  • 7 Breier A, Su T P, Saunders R, Carson R E, Kolachana B S, Bartolomeis A de, Weinberger D R, Weisenfeld N, Malhotra A K, Eckelman W C, Pickar D. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.  Proc Natl Acad Sci USA. 1997;  94 (6) 2569-2574
  • 8 Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies.  J Psychopharmacol. 1999;  13 (4) 358-371
  • 9 Carlsson A. Antipsychotic drugs, neurotransmitters, and schizophrenia.  Am J Psychiatry. 1978;  135 (2) 165-173
  • 10 Abraham H D, Aldridge A M. Adverse consequences of lysergic acid diethylamide.  Addiction. 1993;  88 (10) 1327-1334
  • 11 Allen R M, Young S J. Phencyclidine-induced psychosis.  Am J Psychiatry. 1978;  135 (9) 1081-1084
  • 12 Krystal J H, Karper L P, Seibyl J P, Freeman G K, Delaney R, Bremner J D, Heninger G R, Bowers Jr M B, Charney D S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.  Arch Gen Psychiatry. 1994;  51 (3) 199-214
  • 13 Tamminga C. Glutamatergic aspects of schizophrenia.  Br J Psychiatry Suppl. 1999;  37 12-15
  • 14 Lindvall O, Bjorklund A, Skagerberg G. Dopamine-containing neurons in the spinal cord: anatomy and some functional aspects.  Ann Neurol. 1983;  14 (3) 255-260
  • 15 Pycock C J, Kerwin R W, Carter C J. Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats.  Nature. 1980;  286 (5768) 74-76
  • 16 Carlsson A. The current status of the dopamine hypothesis of schizophrenia.  Neuropsychopharmacology. 1988;  1 (3) 179-186
  • 17 Carlsson A, Waters N, Waters S, Carlsson M L. Network interactions in schizophrenia - therapeutic implications.  Brain Res Brain Res Rev. 2000;  31 (2 - 3) 342-349
  • 18 Weinberger D R. Implications of normal brain development for the pathogenesis of schizophrenia.  Arch Gen Psychiatry. 1987;  44 (7) 660-669
  • 19 Davis K L, Kahn R S, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization.  Am J Psychiatry. 1991;  148 (11) 1474-1486
  • 20 Goldman-Rakic P S, Selemon L D. Functional and anatomical aspects of prefrontal pathology in schizophrenia.  Schizophr Bull. 1997;  23 (3) 437-458
  • 21 Yang C R, Seamans J K, Gorelova N. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.  Neuropsychopharmacology. 1999;  21 (2) 161-194
  • 22 Farde L, Wiesel F A, Halldin C, Sedvall G. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs.  Arch Gen Psychiatry. 1988;  45 (1) 71-76
  • 23 Nordstrom A L, Farde L, Wiesel F A, Forslund K, Pauli S, Halldin C, Uppfeldt G. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients.  Biol Psychiatry. 1993;  33 (4) 227-235
  • 24 Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis.  Am J Psychiatry. 2001;  158 (3) 360-369
  • 25 Seeman P. Atypical antipsychotics: mechanism of action.  Can J Psychiatry. 2002;  47 (1) 27-38
  • 26 Fleischhacker W W. Aripiprazole. Expert Opinion in Pharmacotherapy 2005
  • 27 Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. SB 242 084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system.  Neuropharmacology. 1999;  38 (8) 1195-1205
  • 28 Gobert A, Rivet J M, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas J P, Cistarelli L, Melon C, Millan M J. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat.  Synapse. 2000;  36 (3) 205-221
  • 29 Celada P, Puig M V, Casanovas J M, Guillazo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors.  J Neurosci. 2001;  21 (24) 9917-9929
  • 30 Ichikawa J, Meltzer H Y. R(+)-8-OH-DPAT, a serotonin(1A) receptor agonist, potentiated S(-)-sulpiride-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens but not striatum.  J Pharmacol Exp Ther. 1999;  291 (3) 1227-1232
  • 31 Kane J M, Carson W H, Saha A R, McQuade R D, Ingenito G G, Zimbroff D L, Ali M W. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder.  J Clin Psychiatry. 2002;  63 (9) 763-771
  • 32 Schotte A, Janssen P F, Gommeren W, Luyten W H, Gompel P van, Lesage A S, Loore K de, Leysen J E. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding.  Psychopharmacology. 1996;  124 (1 - 2) 57-73
  • 33 Richelson E. Neuroleptic affinities for human brain receptors and their use in predicting adverse effects.  J Clin Psychiatry. 1984;  45 (8) 331-336
  • 34 Westenberg H G. Pharmacology of antidepressants: selectivity or multiplicity?.  J Clin Psychiatry. 1999;  60 Suppl 17 : 4 - 8 discussion 46-48
  • 35 Hertel P, Fagerquist M V, Svensson T H. Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade.  Science. 1999;  286 (5437) 105-107
  • 36 Bolden C, Cusack B, Richelson E. Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells.  J Pharmacol Exp Ther. 1992;  260 (2) 576-580
  • 37 Felder C C, Porter A C, Skillman T L, Zhang L, Bymaster F P, Nathanson N M, Hamilton S E, Gomeza J, Wess J, McKinzie D L. Elucidating the role of muscarinic receptors in psychosis.  Life Sci. 2001;  68 (22 - 23) 2605-2613
  • 38 Parada M A, Hernandez L, Puig de Parada M, Rada P, Murzi E. Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum.  J Pharmacol Exp Ther. 1997;  281 (1) 582-588
  • 39 Ichikawa J, Dai J, O'Laughlin I A, Fowler W L, Meltzer H Y. Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum.  Neuropsychopharmacology. 2002;  26 (3) 325-339
  • 40 Fleischhacker W W. New developments in the pharmacotherapy of schizophrenia.  J Neural Transm Suppl. 2003;  64 105-117
  • 41 Gorelick D A, Balster R L. Phencyclidine (PCP). In: Bloom FE, Kupfer DJ (Hrsg.). Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press 1995: 1767-1776
  • 42 Baranano D E, Ferris C D, Snyder S H. Atypical neural messengers.  Trends Neurosci. 2001;  24 (2) 99-106
  • 43 Goff D C, Coyle J T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia.  Am J Psychiatry. 2001;  158 (9) 1367-1377
  • 44 Goff D C, Herz L, Posever T, Shih V, Tsai G, Henderson D C, Freudenreich O, Evins A E, Yovel I, Zhang H, Schoenfeld D. A six-month, placebo-controlled trial of D: -cycloserine co-administered with conventional antipsychotics in schizophrenia patients.  Psychopharmacology. 2005;  179 (1) 144-150
  • 45 Seeman M V. The role of estrogen in schizophrenia.  J Psychiatry Neurosci. 1996;  21 (2) 123-127
  • 46 Riecher-Rössler A. Estrogens and the gonadal axis. Implications for women with schizophrenia.  Nervenarzt. 2003;  74 (5) 398-405

Univ.-Prof. Dr. W. Wolfgang Fleischhacker

Leiter der Abteilung für Biologische Psychiatrie · Universitätsklinik für Psychiatrie · Medizinische Universität Innsbruck

Anichstraße 35

6020 Innsbruck

Österreich

Email: wolfgang.fleischhacker@uibk.ac.at

    >