Klinische Neurophysiologie 2005; 36(4): 173-177
DOI: 10.1055/s-2005-915322
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Bedeutung der Pulsform und der Stromflussrichtung bei TMS mit Einfach- und Doppelimpulsen sowie bei repetitiver TMS

Impact of Pulse Waveform and Current Direction for Single and Paired Pulse TMS and for Repetitive TMSM.  Sommer1 , W.  Paulus1
  • 1Abteilung Klinische Neurophysiologie, Georg-August-Universität Göttingen
Further Information

Publication History

Publication Date:
08 December 2005 (online)

Zusammenfassung

Pulsform und Stromflussrichtung beeinflussen die Effektivität transkranieller Magnetstimulation beim Menschen. Dies betrifft bei Einzelreizen die motorische Schwelle sowie die Dauer der Silent Period im Motorkortex und die Phosphenschwelle im visuellen Kortex, bei Doppelreizen das Verhältnis intrakortikaler Inhibition und Fazilitation in einem konventionellen Doppelreizparadigma der TMS über dem Motorkortex, und schließlich bei der repetitiven transkraniellen Magnetstimulation das Ausmaß und die Spezifität der im Motorkortex induzierten Bahnung und Hemmung. Mögliche Ursache dieser Unterschiede ist die unterschiedlich starke und verschieden selektive Aktivierung hemmender und bahnender Interneurone je nach Pulsform und Stromflussrichtung.

Abstract

Waveform and current direction determine the effectiveness of transcranial magnetic stimulation in humans. For single pulse TMS these factors have been shown to influence the motor threshold and the silent period duration detected by motor cortex stimulation and the phosphene threshold tested by occipital stimulation, for paired pulses they affect the balance of intracortical inhibition and facilitation within the motor cortex, and for repetitive stimulation the extent and specificity of the induced motor cortex inhibition and facilitation. Possibly, the extent and selectivity of activation of inhibiting and facilitating interneurons depend on TMS waveform and current direction.

Literatur

  • 1 Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex (letter).  Lancet. 1985;  1 1106-1107
  • 2 Barker A T. Magnetic nerve stimulation. Basic principles and development. In: Nilsson J, Panizza M, Grandori F (eds) Advances in magnetic stimulation. Mathematical modeling and clinical applications. Pavia; Fondazione Salvatore Maugeri Edizioni 1996: 1-11
  • 3 Kimura J (Hrsg). Principles of nerve conduction studies.  In: Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia; F. A. Davis 1989: 619
  • 4 Claus D. Motorisch evozierte Potentiale (MEP). In: Lowitsch K, Hopf HC, Buchner H, Claus D, Jörg J, Rappelsberger P, Tackmann W (Hrsg) Das EP-Buch. Stuttgart, New York; Thieme 2000: 173-232
  • 5 Maccabee P J, Nagaranjan S S, Amassian V E, Durand D M, Szabo A Z, Ahad A B, Cracco R Q, Lai K S, Eberle L P. Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine periheral nerve.  J Physiol. 1998;  513 571-585
  • 6 Jalinous R. Guide to the Magstim QuadroPulse. Spring Gardens; The Magstim Company 1995
  • 7 Bohning D E. Introduction and overview of TMS physics. In: George MS, Belmaker RH (eds) Transcranial magnetic stimulation in neuropsychiatry. Washington, D. C., London, England; American Psychiatric Press, Inc 2000: 13-44
  • 8 Corthout E, Barker A T, Cowey A. Transcranial magnetic stimulation Which part of the current waveform causes the stimulation?.  Exp Brain Res. 2001;  141 128-132
  • 9 Lazzaro V Di, Oliviero A, Mazzone P, Insola A, Pilato F, Saturno E, Accurso A, Tonali P, Rothwell J C. Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans.  Exp Brain Res. 2001;  141 121-127
  • 10 Sommer M, Lang N, Tergau F, Paulus W. Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation?.  Neuroreport. 2002;  13 809-811
  • 11 Sommer M, Tergau F, Wischer S, Paulus W. Paired-pulse repetitive transcranial magnetic stimulation of the human motor cortex.  Exp Brain Res. 2001;  139 465-472
  • 12 Sommer M, Kamm T, Tergau F, Ulm G, Paulus W. Repetitive paired-pulse transcranial magnetic stimulation affects corticospinal excitability and finger tapping in Parkinson's disease.  Clin Neurophysiol. 2002;  113 944-950
  • 13 Chiappa K H, Cros D, Cohen D. Magnetic stimulation: Determination of coil current flow direction.  Neurology. 1991;  41 1154-1155
  • 14 Niehaus L, Meyer B U, Weyh T. Influence of pulse configuration and direction of coil current on excitatory effects of magnetic motor cortex and nerve stimulation.  Clin Neurophysiol. 2000;  111 75-80
  • 15 Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H. Motor threshold in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types.  Clin Neurophysiol. 2001;  112 250-258
  • 16 Brasil-Neto J P, Cohen L G, Panizza M, Nilsson J, Roth B J, Hallett M. Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity.  J Clin Neurophysiol. 1992;  9 132-136
  • 17 Ziemann U, Rothwell J C, Ridding M C. Interaction between intracortical inhibition and facilitation in human motor cortex.  J Physiol. 1996;  496 873-881
  • 18 Kammer T, Beck S, Erb M, Grodd W. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.  Clin Neurophysiol. 2001;  112 2015-2021
  • 19 Orth M, Rothwell J C. The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse.  Clin Neurophysiol. 2004;  115 1076-1082
  • 20 Kujirai T, Caramia M D, Rothwell J C, Day B L, Thompson P D, Ferbert A, Wroe S, Asselman P, Marsden C D. Corticocortical inhibition in human motor cortex.  J Physiol. 1993;  471 501-519
  • 21 Peinemann A, Lehner C, Conrad B, Siebner H R. Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex.  Neurosci Lett. 2001;  313 33-36
  • 22 Tokimura H, Ridding M C, Tokimura Y, Amassian V E, Rothwell J C. Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex.  Electroencephalogr Clin Neurophysiol. 1996;  101 263-272
  • 23 Ziemann U, Tergau F, Wassermann E M, Wischer S, Hildebrandt J, Paulus W. Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation.  J Physiol (Lond). 1998;  511 181-190
  • 24 Sommer M, Ruge D, Tergau F, Beuche W, Altenmüller E, Paulus W. Intracortical excitability in the hand motor representation in hand dystonia and blepharospasm.  Mov Disord. 2002;  17 1017-1025
  • 25 Chen R, Classen J, Gerloff C, Celnik P, Wassermann E M, Hallett M, Cohen L G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.  Neurology. 1997;  48 1398-1403
  • 26 Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior.  Clin Neurophysiol. 2000;  111 1002-1007
  • 27 Siebner H R, Tormos J M, Ceballos-Baumann A O, Auer C, Catala M D, Conrad B, Pascual-Leone A. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp.  Neurology. 1999;  52 529-537
  • 28 Touge T, Gerschlager W, Brown P, Rothwell J. Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?.  Clin Neurophysiol. 2001;  112 2138-2145
  • 29 Narici L, Romani G L, Salustri C, Pizella V, Modena I, Papanicolaou A C. Neuromagnetic evidence of synchronized spontaneous activity in the brain following repetitive sensory stimulation.  Int J Neuroscience. 1987;  32 831-836
  • 30 Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement.  Neuroscience. 1994;  60 537-550
  • 31 Antal A, Kincses T Z, Nitsche M A, Bartfai O, Demmer I, Sommer M, Paulus W. Pulse configuration dependent effects of repetitive transcranial magnetic stimulation on visual perception.  Neuroreport. 2002;  13 1-5
  • 32 Pascual-Leone A, Valls-Sole J, Wassermann E M, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.  Brain. 1994;  117 847-858
  • 33 Tings T, Lang N, Tergau F, Paulus W, Sommer M. Orientation-specific fast rTMS maximizes corticospinal inhibition and facilitation.  Exp Brain Res. 2005;  124 323-333
  • 34 Lazzaro V Di, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell J C. The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation.  Exp Brain Res. 2001;  138 268-273
  • 35 Lazzaro V Di, Oliviero A, Pilato F, Saturno E, Insola A, Mazzone P, Tonali P A, Rothwell J C. Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape.  Clin Neurophysiol. 2002;  113 114-119

Martin Sommer

Abteilung Klinische Neurophysiologie · Georg-August-Universität Göttingen

Robert-Koch-Straße 40

37075 Göttingen

Email: msommer@gwdg.de

    >