Klinische Neurophysiologie 2005; 36(4): 165-172
DOI: 10.1055/s-2005-866866
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Transkranielle Magnetstimulation und funktionelle Bildgebung

Transcranial Magnetic Stimulation and Functional ImagingA.  Flöel1 , C.  Breitenstein1 , 2 , S.  Knecht1 , 2
  • 1Klinik und Poliklinik für Neurologie Münster
  • 2IZKF Münster
Further Information

Publication History

Publication Date:
08 December 2005 (online)

Zusammenfassung

Die transkranielle Magnetstimulation (TMS) ist eine in den Neurowissenschaften inzwischen weit verbreitete Methode zur Untersuchung neurophysiologischer Prozesse sowie des Zusammenhangs zwischen fokaler Gehirnaktivität und Verhalten. In der folgenden Übersichtsarbeit beschreiben wir zunächst kurz den physikalischen Hintergrund der TMS. Der Hauptteil der Arbeit befasst sich mit den verschiedenen Anwendungsmöglichkeiten einer Kombination aus TMS und funktioneller zerebraler Bildgebung. Die funktionelle Bildgebung kann zum einen genutzt werden, um eine genaue Lokalisation der individuellen TMS-Stimulationsorte zu erhalten. Hierzu haben sich kommerziell erhältliche Neuronavigationsverfahren etabliert (www.brainsight.com; www.nexstim.com). Alternativ kann mit computergestützten Verfahren zur Projektion von Gehirnarealen auf die Kopfoberfläche eine hohe Genauigkeit des Stimulationsortes erzielt werden (http://neurologie.uni-muenster.de/T2T/index.html). Mit der TMS kann dann bestimmt werden, welche funktionelle Relevanz eine regionale kortikale Aktivierung für die Durchführung einer bestimmten Aufgabe hat. In einem weiteren Abschnitt wird beschrieben, wie die funktionelle Bildgebung zeitnah zur Darstellung der durch die TMS induzierten Blutfluss-/Erregbarkeitsänderungen genutzt werden kann. Dies kann sowohl nach der eigentlichen TMS-Stimulation erfolgen als auch (technisch jedoch erheblich aufwändiger) während der Stimulation. Abschließend erfolgt eine Zusammenfassung, wie die Kombination aus TMS und funktioneller Bildgebung zum Verständnis kortikaler Plastizität und therapeutischer Effekte der TMS beitragen kann.

Abstract

Transcranial magnetic stimulation (TMS) is an important tool in neuroscience for the study of neurophysiology and the relationship between focal brain activity and behaviour. In this contribution, we give first a brief description of the physical background of TMS, and then provide an overview of the combined application of TMS and functional imaging. Initially we describe how imaging can be used to determine the exact localisation for TMS in each individual subject, using commercially available neuronavigational systems (www.brainsight.com; www.nexstim.com) or computer-assisted tools that project brain areas onto the scalp with high precision (http://neurologie.uni-muenster.de/T2T/index.html). TMS is subsequently applied to investigate the functional relevance of the cortical activation in a given task, as assessed by functional imaging. Next, we discuss how functional imaging can be used to visualise TMS-induced changes in blood flow and cortical activity, either at the end of stimulation or, technically more challenging, during stimulation. Finally, we sum up how the combined use of TMS and functional imaging may contribute to the understanding of plasticity in the human cortex and to the therapeutic effects of TMS in various neuropsychiatric disorders.

Literatur

  • 1 Amedi A, Flöel A, Knecht S, Zohary E, Cohen L G. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects.  Nat Neurosci. 2004;  7 1266-1270
  • 2 Amedi A, Raz N, Pianka P, Malach R, Zohary E. Early „visual” cortex activation correlates with superior verbal memory performance in the blind.  Nat Neurosci. 2003;  6 758-766
  • 3 Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex.  Lancet. 1985;  1 1106-1107
  • 4 Bohning D E, He L, George M S, Epstein C M. Deconvolution of transcranial magnetic stimulation (TMS) maps.  J Neural Transm. 2001;  108 35-52
  • 5 Bohning D E, Pecheny A P, Epstein C M, Speer A M, Vincent D J, Dannels W, George M S. Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI.  Neuroreport. 1997;  8 2535-2538
  • 6 Bohning D E, Shastri A, McConnell K A, Nahas Z, Lorberbaum J P, Roberts D R, Teneback C, Vincent D J, George M S. A combined TMS/fMRI study of intensity-dependent TMS over motor cortex.  Biol Psychiatry. 1999;  45 385-394
  • 7 Buckner R L, Raichle M E, Petersen S E. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups.  J Neurophysiol. 1995;  74 2163-2173
  • 8 Cappa S F, Sandrini M, Rossini P M, Sosta K, Miniussi C. The role of the left frontal lobe in action naming: rTMS evidence.  Neurology. 2002;  59 720-723
  • 9 Chen R, Classen J, Gerloff C, Celnik P, Wassermann E M, Hallett M, Cohen L G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.  Neurology. 1997;  48 1398-1403
  • 10 Cohen L G, Roth B J, Nilsson J, Dang N, Panizza M, Bandinelli S, Friauf W, Hallett M. Effects of coil design on delivery of focal magnetic stimulation. Technical considerations.  Electroencephalogr Clin Neurophysiol. 1990;  75 350-357
  • 11 Deppe M, Knecht S, Papke K, Lohmann H, Fleischer H, Heindel W, Ringelstein E B, Henningsen H. Assessment of hemispheric language lateralization: a comparison between fMRI and fTCD.  J Cereb Blood Flow Metab. 2000;  20 263-268
  • 12 Drager B, Breitenstein C, Helmke U, Kamping S, Knecht S. Specific and nonspecific effects of transcranial magnetic stimulation on picture-word verification.  Eur J Neurosci. 2004;  20 1681-1687
  • 13 Dressler D, Voth E, Feldmann M, Benecke R. Safety aspects of transcranial brain stimulation in man tested by single photon emission-computed tomography.  Neurosci Lett. 1990;  119 153-155
  • 14 Duning T, Rogalewski A, Steinstraeter O, Kugel H, Jansen A, Breitenstein C, Knecht S. Repetitive TMS temporarily alters brain diffusion.  Neurology. 2004;  62 2144; author reply 2144-2145
  • 15 Epstein C M, Lah J J, Meador K, Weissman J D, Gaitan L E, Dihenia B. Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation.  Neurology. 1996;  47 1590-1593
  • 16 Epstein C M, Meador K J, Loring D W, Wright R J, Weissman J D, Sheppard S, Lah J J, Puhalovich F, Gaitan L, Davey K R. Localization and characterization of speech arrest during transcranial magnetic stimulation.  Clin Neurophysiol. 1999;  110 1073-1079
  • 17 Epstein C M, Schwartzberg D G, Davey K R, Sudderth D B. Localizing the site of magnetic brain stimulation in humans.  Neurology. 1990;  40 666-670
  • 18 Ettinger G J, Leventon M E, Grimson W E, Kikinis R, Gugino L, Cote W, Sprung L, Aglio L, Shenton M E, Potts G, Hernandez V L, Alexander E. Experimentation with a transcranial magnetic stimulation system for functional brain mapping.  Med Image Anal. 1998;  2 133-142
  • 19 Flitman S S, Grafman J, Wassermann E M, Cooper V, O'Grady J, Pascual-Leone A, Hallett M. Linguistic processing during repetitive transcranial magnetic stimulation.  Neurology. 1998;  50 175-181
  • 20 Flöel A, Breitenstein C, Knecht S. The role of the left frontal lobe in action naming: rTMS evidence.  Neurology. 2003;  60 1052; author reply 1052
  • 21 Flöel A, Poeppel D, Buffalo E A, Braun A, Wu C W, Seo H J, Stefan K, Knecht S, Cohen L G. Prefrontal cortex asymmetry for memory encoding of words and abstract shapes.  Cereb Cortex. 2004;  14 404-409
  • 22 Fox P, Ingham R, George M S, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P. Imaging human intra-cerebral connectivity by PET during TMS.  Neuroreport. 1997;  8 2787-2791
  • 23 Hess G, Donoghue J P. Long-term potentiation and long-term depression of horizontal connections in rat motor cortex.  Acta Neurobiol Exp (Wars). 1996;  56 397-405
  • 24 Huang Y Z, Edwards M J, Rounis E, Bhatia K P, Rothwell J C. Theta burst stimulation of the human motor cortex.  Neuron. 2005;  45 201-206
  • 25 Ilmoniemi R J, Virtanen J, Ruohonen J, Karhu J, Aronen H J, Naatanen R, Katila T. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity.  Neuroreport. 1997;  8 3537-3540
  • 26 Iriki A, Pavlides C, Keller A, Asanuma H. Long-term potentiation in the motor cortex.  Science. 1989;  245 1385-1387
  • 27 Knecht S, Flöel A, Drager B, Breitenstein C, Sommer J, Henningsen H, Ringelstein E B, Pascual-Leone A. Degree of language lateralization determines susceptibility to unilateral brain lesions.  Nat Neurosci. 2002;  5 695-699
  • 28 Krings T, Chiappa K H, Foltys H, Reinges M H, Cosgrove G R, Thron A. Introducing navigated transcranial magnetic stimulation as a refined brain mapping methodology.  Neurosurg Rev. 2001;  24 171-179
  • 29 Krings T, Foltys H, Reinges M H, Kemeny S, Rohde V, Spetzger U, Gilsbach J M, Thron A. Navigated transcranial magnetic stimulation for presurgical planning - correlation with functional MRI.  Minim Invasive Neurosurg. 2001;  44 234-239
  • 30 Kujirai T, Caramia M D, Rothwell J C, Day B L, Thompson P D, Ferbert A, Wroe S, Asselman P, Marsden C D. Corticocortical inhibition in human motor cortex.  J Physiol. 1993;  471 501-519
  • 31 Li X, Nahas Z, Lomarev M, Denslow S, Shastri A, Bohning D E, George M S. Prefrontal cortex transcranial magnetic stimulation does not change local diffusion: a magnetic resonance imaging study in patients with depression.  Cogn Behav Neurol. 2003;  16 128-135
  • 32 Maeda F, Gangitano M, Thall M, Pascual-Leone A. Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS).  Clin Neurophysiol. 2002;  113 376-382
  • 33 Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability.  Exp Brain Res. 2000;  133 425-430
  • 34 Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.  Clin Neurophysiol. 2000;  111 800-805
  • 35 Mottaghy F M, Gangitano M, Horkan C, Chen Y, Pascual-Leone A, Schlaug G. Repetitive TMS temporarily alters brain diffusion.  Neurology. 2003;  60 1539-1541
  • 36 Mottaghy F M, Gangitano M, Krause B J, Pascual-Leone A. Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation.  Neuroimage. 2003;  18 565-575
  • 37 Mottaghy F M, Hungs M, Brugmann M, Sparing R, Boroojerdi B, Foltys H, Huber W, Topper R. Facilitation of picture naming after repetitive transcranial magnetic stimulation.  Neurology. 1999;  53 1806-1812
  • 38 Mottaghy F M, Keller C E, Gangitano M, Ly J, Thall M, Parker J A, Pascual-Leone A. Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients.  Psychiatry Res. 2002;  115 1-14
  • 39 Mottaghy F M, Krause B J, Kemna L J, Topper R, Tellmann L, Beu M, Pascual-Leone A, Muller-Gartner H W. Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation.  Neurosci Lett. 2000;  280 167-170
  • 40 Mottaghy F M, Pascual-Leone A, Kemna L J, Topper R, Herzog H, Muller-Gartner H W, Krause B J. Modulation of a brain-behavior relationship in verbal working memory by rTMS.  Brain Res Cogn Brain Res. 2003;  15 241-249
  • 41 Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior.  Clin Neurophysiol. 2000;  111 1002-1007
  • 42 Pascual-Leone A, Valls-Sole J, Wassermann E M, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.  Brain. 1994;  117 (Pt 4) 847-858
  • 43 Paus T. Imaging the brain before, during, and after transcranial magnetic stimulation.  Neuropsychologia. 1999;  37 219-224
  • 44 Paus T, Jech R, Thompson C J, Comeau R, Peters T, Evans A C. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex.  J Neurosci. 1997;  17 3178-3184
  • 45 Paus T, Jech R, Thompson C J, Comeau R, Peters T, Evans A C. Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex.  J Neurophysiol. 1998;  79 1102-1107
  • 46 Rossi S, Cappa S F, Babiloni C, Pasqualetti P, Miniussi C, Carducci F, Babiloni F, Rossini P M. Prefrontal [correction of Prefontal] cortex in long-term memory: an „interference” approach using magnetic stimulation.  Nat Neurosci. 2001;  4 948-952
  • 47 Rossi S, Miniussi C, Pasqualetti P, Babiloni C, Rossini P M, Cappa S F. Age-related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study.  J Neurosci. 2004;  24 7939-7944
  • 48 Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation.  J Physiol. 1994;  481 (Pt 1) 243-250
  • 49 Rudiak D, Marg E. Finding the depth of magnetic brain stimulation: a re-evaluation.  Electroencephalogr Clin Neurophysiol. 1994;  93 358-371
  • 50 Sack A T, Hubl D, Prvulovic D, Formisano E, Jandl M, Zanella F E, Maurer K, Goebel R, Dierks T, Linden D E. The experimental combination of rTMS and fMRI reveals the functional relevance of parietal cortex for visuospatial functions.  Brain Res Cogn Brain Res. 2002;  13 85-93
  • 51 Sack A T, Sperling J M, Prvulovic D, Formisano E, Goebel R, Salle F Di, Dierks T, Linden D E. Tracking the mind's image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery.  Neuron. 2002;  35 195-204
  • 52 Saypol J M, Roth B J, Cohen L G, Hallett M. A theoretical comparison of electric and magnetic stimulation of the brain.  Ann Biomed Eng. 1991;  19 317-328
  • 53 Schnitzler A, Benecke R. The silent period after transcranial magnetic stimulation is of exclusive cortical origin: evidence from isolated cortical ischemic lesions in man.  Neurosci Lett. 1994;  180 41-45
  • 54 Shajahan P M, Glabus M F, Steele J D, Doris A B, Anderson K, Jenkins J A, Gooding P A, Ebmeier K P. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression.  Prog Neuropsychopharmacol Biol Psychiatry. 2002;  26 945-954
  • 55 Shastri A, George M S, Bohning D E. Performance of a system for interleaving transcranial magnetic stimulation with steady-state magnetic resonance imaging.  Electroencephalogr Clin Neurophysiol. 1999;  51, Suppl 55-64
  • 56 Siebner H R, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity.  Exp Brain Res. 2003;  148 1-16
  • 57 Singh K D, Hamdy S, Aziz Q, Thompson D G. Topographic mapping of trans-cranial magnetic stimulation data on surface rendered MR images of the brain.  Electroencephalogr Clin Neurophysiol. 1997;  105 345-351
  • 58 Singh K D, Holliday I E, Furlong P L, Harding G F. Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation.  Electroencephalogr Clin Neurophysiol. 1997;  102 81-85
  • 59 Strafella A P, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.  J Neurosci. 2001;  21 RC157
  • 60 Strens L H, Oliviero A, Bloem B R, Gerschlager W, Rothwell J C, Brown P. The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence.  Clin Neurophysiol. 2002;  113 1279-1285
  • 61 Teneback C C, Nahas Z, Speer A M, Molloy M, Stallings L E, Spicer K M, Risch S C, George M S. Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS.  J Neuropsychiatry Clin Neurosci. 1999;  11 426-435
  • 62 Triggs W J, McCoy K J, Greer R, Rossi F, Bowers D, Kortenkamp S, Nadeau S E, Heilman K M, Goodman W K. Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold.  Biol Psychiatry. 1999;  45 1440-1446
  • 63 Vickery R M, Bindman L J. Long-lasting decreases of AMPA responses following postsynaptic activity in single hippocampal neurons.  Synapse. 1997;  25 103-106
  • 64 Weiss S R, Li X L, Rosen J B, Li H, Heynen T, Post R M. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation.  Neuroreport. 1995;  6 2171-2176

Agnes Flöel

Klinik und Poliklinik für Neurologie

Albert-Schweitzer-Straße 33

48129 Münster

Phone: 0251/8349970

Fax: 0251/8348181

Email: floeel@uni-muenster.de

    >