Exp Clin Endocrinol Diabetes 2005; 113(7): 359-364
DOI: 10.1055/s-2005-865740
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Establishment of the hu-PBL-SCID Mouse Model for the Investigation of Thyroid Cancer

F. Gyory1 , E. Mezosi2 , S. Szakall3 , L. Bajnok2 , E. Varga2 , A. Borbely4 , A. Gazdag2 , I. Juhasz5 , G. Lukacs1 , E. V. Nagy2
  • 1Department of Surgery, Medical and Health Science Center, University of Debrecen, Hungary
  • 2Department of Medicine, Medical and Health Science Center, University of Debrecen, Hungary
  • 3Department of Pathology, Medical and Health Science Center, University of Debrecen, Hungary
  • 4Department of Microbiology, Medical and Health Science Center, University of Debrecen, Hungary
  • 5Department of Dermatology, Medical and Health Science Center, University of Debrecen, Hungary
Further Information

Publication History

Received: October 5, 2004 First decision: January 5, 2005

Accepted: March 15, 2005

Publication Date:
18 July 2005 (online)

Abstract

New experimental models of human neoplastic diseases attempt to mimic the human environment that fostered the development of disease in cancer patients. The aim of the present study was to establish a human lymphocyte-engrafted, severe combined immunodeficient (hu-PBL-SCID) mouse model to investigate thyroid cancer and to evaluate the potential use of this model for cancer immunotherapy. Thyroid neoplastic tissues were obtained from ten patients (one follicular adenoma, five papillary, one follicular, one anaplastic and two medullary cancers). One 8 × 4 × 3 millimeter sample from each tumor was cut into two pieces of identical size and transplanted into two SCID mice. In each case, one of the two mice was injected intraperitoneally with lymphocytes from the same tumor patient for the reconstitution of the human immune system (Group A), while the other animal received no lymphocytes (Group B). The engraftment of the tumors was successful in all cases. The growth rate was highly dependent on the histological type. When histologies were compared before implantation and after the removal of the implants, the characters of the tumors proved to be unchanged, except one case where an anaplastic cancer arose from a papillary tumor. Macrophages were present in all but one papillary cancer. All differentiated thyroid cancers were infiltrated by T and B lymphocytes. Lymphocytes and macrophages disappeared from 19/20 grafts by week 16. However, in one case from group A lymphocytes were detected four months after the transplantation. In another case from group A, one papillary cancer spontaneously decreased in size and disappeared. Before implantation, HLA-DR expression was detected in every papillary cancer. HLA-DR expression in the grafts was not seen in 3/5 cases by week 16. In conclusion, an animal model has been established for the investigation of human thyroid cancer, by which the analysis of anti-tumor immunity, as a postulate of immune therapy, may be possible.

References

  • 1 Amino N, Pysher T, Cohen E P, DeGroot L J. Immunologic aspects of human thyroid cancer. Humoral and cell-mediated immunity and a trial of immunotherapy.  Cancer. 1975;  36 963-973
  • 2 Aoki N, DeGroot J. Lymphocyte blastogenic response to human thyroglobulin in Graves' disease, Hashimoto's thyroiditis, and metastatic thyroid cancer.  Clin Exp Immunol. 1979;  38 523-530
  • 3 Bagnasco M, Venuti D, Paolieri F, Torre G, Ferrini S, Canonica G W. Phenotypic and functional analysis at the clonal level of infiltrating T lymphocytes in papillary carcinoma of the thyroid: Prevalence of cytolytic T cells with natural killer-like or lymphokine-activated killer activity.  J Clin Endocrinol Metab. 1989;  69 832-836
  • 4 Baker J R, Fosso C K. Immunological aspects of cancers arising from thyroid follicular cells.  Endocrine Reviews. 1993;  14 729-746
  • 5 Baker J R. The immune response to papillary thyroid cancer.  J Clin Endocrinol Metab. 1995;  80 3419-3420
  • 6 Bankert R B, Hess S D, Egilmez N K. SCID mouse models to study human cancer pathogenesis and approaches to therapy: potential, limitations, and future directions.  Front Biosci. 2002;  7 44-62
  • 7 Bauer S, Renner C, Juwana J P, Held G, Ohnesorge S, Gerlach K, Pfreundschuh M. Immunotherapy of human tumors with T-cell-activating bispecific antibodies: stimulation of cytotoxic pathways in vivo.  Cancer Res. 1999;  59 1961-1965
  • 8 Bisi H, Fernades V SO, De Camargo R YA, Koch L, Abdo A H, De Brito T. The prevalence of unsuspected thyroid pathology in 300 sequential autopsies with special reference to the incidental carcinoma.  Cancer. 1989;  64 1888-1893
  • 9 Bosma G C, Custer R P, Bosma M J. A severe combined immunodeficiency mutation in the mouse.  Nature. 1983;  301 527-530
  • 10 Boyd C M, Baker J R. The immunology of thyroid cancer.  Endocrinol Metab Clin North Am. 1996;  25 159-179
  • 11 Feinmesser M, Stern S, Mechlis-Frish S, Lubin E, Feinmesser R, Kristt D. HLA-DR expression and lymphocytic infiltration in metastatic and non-metastatic papillary carcinoma of the thyroid.  Eur J Surg Oncol. 1996;  22 494-501
  • 12 Fiumara A, Belfiore A, Russo G, Salomone E, Santonocito G M, Ippolito O, Vigneri R, Gangemi P. In situ evidence of neoplastic cell phagocytosis by macrophages in papillary thyroid cancer.  J Clin Endocrinol Metab. 1997;  82 1615-1620
  • 13 Goldsmith N K, Dikman S, Bermas B, Davies T F, Roman S. HLA class II antigen expression and the autoimmune thyroid response in patients with benign and malignant thyroid tumors.  Clin Immunol Immunopathol. 1988;  48 161-173
  • 14 Hu Z, Sun Y, Garen A. Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model.  Proc Natl Acad Sci USA. 1999;  96 8161-8166
  • 15 Iwanuma Y, Chen F A, Egilmez N K, Takita H, Bankert R B. Antitumor immune response of human peripheral blood lymphocytes coengrafted with tumor into severe combined immunodeficient mice.  Cancer Res. 1997;  57 2937-2942
  • 16 Juhasz F, Boros P, Szegedi G, Balazs G, Suranyi P, Kraszits E, Stenszky V, Farid N R. Immunogenetic and immunologic studies of differentiated thyroid cancer.  Cancer. 1989;  63 1318-1326
  • 17 Juhasz I, Albelda S M, Elder D E, Murphy G F, Adachi K, Herlyn D, Valyi-Nagy I T, Herlyn M. Growth and invasion of human melanomas in human skin grafted to immunodeficient mice.  Am J Pathol. 1993;  143 528-537
  • 18 Kamma H, Fujii K, Ogata T. Lymphocytic infiltration in juvenile thyroid carcinoma.  Cancer. 1988;  62 1988-1993
  • 19 Kashima K, Yokoyama S, Noguchi S, Murakami N, Yamashita H, Watanabe S, Uchino S, Toda M, Sasaki A, Daa T, Nakayama I. Chronic thyroiditis as a favorable prognostic factor in papillary thyroid carcinoma.  Thyroid. 1998;  8 197-202
  • 20 Kawai K, Resetkova E, Enomoto T, Fornasier V, Volpe R. Is human leukocyte antigen-Dr and intercellular adhesion molecule-1 expression on human thyrocytes consitutive in papillary thyroid cancer? Comparative studies of human thyroid xenografts in severe combined immunodeficient and nude mice.  J Clin Endocrinol Metab. 1998;  83 157-164
  • 21 Kripke M L. Immunoregulation of carcinogenesis: past, present, and future.  J Natal Cancer Inst. 1988;  80 722-727
  • 22 Lee R S, Schlumberger M, Caillou B, Pages F, Fridman W H, Tartour E. Phenotypic and functional characterisation of tumor-infiltrating lymphocytes derived from thyroid tumors.  Eur J Cancer. 1996;  32 A 1233-1239
  • 23 Mami-Chouaib F, Echchakir H, Dorothee G, Vergnon I, Chouaib S. Antitumor cytotoxic T-lymphocyte response in human lung carcinoma: identification of a tumor-associated antigen.  Immunol Rev. 2002;  188 114-121
  • 24 Martin A, Kimura H, Thung S, Fong P, Shultz L D, Davies T F. Characteristics of long-term human thyroid peroxidase autoantibody secretion in scid mice transplanted with lymphocytes from patients with autoimmune thyroiditis.  Int Arch Allergy Immunol. 1992;  98 317-323
  • 25 Martin A, Valentine M, Unger P, Yeung S W, Shultz L D, Davies T F. Engraftment of human lymphocytes and thyroid tissue into scid and rag2-deficient mice: absent progression of lymphocytic infiltration.  J Clin Endocrinol Metab. 1994;  79 716-723
  • 26 Matsubayashi S, Kawai K, Matsumoto Y, Mukuta T, Morita T, Hirai K, Matsuzuka F, Kakudoh K, Kuma K, Tamai H. The correlation between papillary thyroid carcinoma and lymphocytic infiltration in the thyroid gland.  J Clin Endocrinol Metab. 1995;  80 3421-3423
  • 27 Mosier D E, Gulizia R J, Baird S M, Wilson D B. Transfer of a functional human immune system to mice with severe combined immunodeficiency.  Nature. 1988;  335 256-259
  • 28 Mueller B M, Reisfeld R A. Potential of the scid mouse as a host for human tumors.  Cancer Metastasis Rev. 1991;  10 193-200
  • 29 Paine-Murrieta G D, Taylor C W, Curtis R A, Lopez M H, Dorr R T, Johnson C S, Funk C Y, Thompson F, Hersh E M. Human tumor models in the severe combined immune deficient (scid) mouse.  Cancer Chemoter Pharmacol. 1997;  40 209-214
  • 30 Resetkova E, Nishikawa M, Mukuta T, Arreaza G, Fornasier V L, Volpe R. Homing of 51 Cr-labeled human peripheral lymphocytes to Graves' thyroid tissue xenografted into SCID mice.  Thyroid. 1995;  5 293-298
  • 31 Sack J, Baker J R, Weetman A P, Wartofsky L, Burman K D. Thyrocyte specific killer cell activity is decreased in patients with thyroid carcinoma.  Cancer. 1987;  59 1914-1917
  • 32 Volpe R, Kasuga Y, Akasu F, Morita T, Yoshikawa N, Resetkova E, Arreaza G. The use of the severe combined immunodeficient mouse and the athymic “nude” mouse as models for the study of human autoimmune thyroid disease.  Clin Immunol Immunopathol. 1993;  67 93-99
  • 33 Volpe R. Graves' disease/model of SCID mouse.  Exp Clin Endocrinol Diabetes. 1996;  104 37-40
  • 34 Williams S S, Alosco T R, Croy B A, Bankert R B. The study of human neoplastic disease in severe combined immunodeficient mice.  Lab Anim Sci. 1993;  43 139-146

Endre V. Nagy

Department of Internal Medicine
Medical and Health Science Center
University of Debrecen

P.O. Box 19

4012 Debrecen

Hungary

Phone: + 3652432280

Fax: + 36 52 41 49 51

Email: nagy@ibel.dote.hu

    >