Int J Sports Med 2006; 27(5): 345-350
DOI: 10.1055/s-2005-865665
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Effect of Prior Exercise on the V·O2/Work Rate Relationship During Incremental Exercise and Constant Work Rate Exercise

A. Marles1 , P. Mucci1 , R. Legrand1 , D. Betbeder1 , F. Prieur1
  • 1Laboratoire d'Analyse Multidisciplinaire des Pratiques Sportives, Université d'Artois, UFR STPAS, Liévin, France
Further Information

Publication History

Accepted after revision: March 22, 2005

Publication Date:
11 July 2005 (online)

Abstract

The disproportionate increase in V·O2 (“extra V·O2”) reported at elevated intensity during incremental exercise (IE) might result from the same physiological mechanisms as the V·O2 slow component observed during heavy constant work rate exercise (CWRE). Moreover, it has been demonstrated that prior heavy exercise can diminish the V·O2 slow component. The aim of this study was to evaluate whether prior heavy exercise also alters the “extra V·O2” during IE. Ten trained sprinters performed three tests on a cycle ergometer: Test 1 was an IE; Test 2 consisted of six minutes of a CWRE (90 % of V·O2max) followed by six minutes at 35 W and by an IE and Test 3 was composed of two CWRE of six minutes separated by six minutes of exercise at 35 W. For each IE, the slope and the intercept of the V·O2/work rate relationship were calculated by linear regression using data before the first Ventilatory Threshold (pre-VT1 slope). The difference between V·O2max measured and V·O2max expected using the pre-LT slope was calculated (ΔV·O2). We also calculated the difference between V·O2 at min five and V·O2 at min three during CWRE of Test 3 (ΔV·O2(5′ - 3′)). V·O2max was significantly higher than V·O2exp during IE of Test 1 and Test 2. Δ V·O2 during IE did not differ between Test 1 and Test 2 (+ 259 ± 229 ml · min-1 vs. + 222 ± 221 ml · min-1). During Test 3, six subjects achieved five minutes of exercise during the second CWRE and Δ V·O2(5′ - 3′) was significantly decreased during the second CWRE (338 ± 65 ml · min-1 vs. 68 ± 98 ml · min-1, n = 6). These results demonstrate that the amplitude of the “extra V·O2” during IE was not affected by prior exercise, whereas the slow component of V·O2 evaluated by Δ V·O2(5′ - 3′) during CWRE was lowered. This implies that prior exercise does not have the same effect on the slow component of V·O2 and on the “extra V·O2”. Therefore we were unable to demonstrate a relationship between the V·O2 slow component and the “extra-V·O2” phenomenon during IE.

References

  • 1 Astrand P O, Rodahl K. Textbook of Work Physiology. Physiological Basis of Exercise. New York; McGraw Hill 1986: 300
  • 2 Barstow T J, Jones A M, Nguyen P H, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-1650
  • 3 Barstow T J, Mole P A. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise.  J Appl Physiol. 1991;  71 2099-2106
  • 4 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 5 Burnley M, Doust J H, Ball D, Jones A M. Effects of prior heavy exercise on V·O2 kinetics during heavy exercise are related to changes in muscle activity.  J Appl Physiol. 2002;  93 167-174
  • 6 Burnley M, Doust J H, Carter H, Jones A M. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans.  Exp Physiol. 2001;  86 417-425
  • 7 Caillaud C F, Anselme F M, Prefaut C G. Effects of two successive maximal exercise tests on pulmonary gas exchange in athletes.  Eur J Appl Physiol. 1996;  74 141-147
  • 8 Coyle E F, Sidossis L S, Horowitz J F, Beltz J D. Cycling efficiency is related to the percentage of type I muscle fibers.  Med Sci Sports Exerc. 1992;  24 782-788
  • 9 Fukuba Y, Hayashi N, Koga S, Yoshida T. V·O2 kinetics in heavy exercise is not altered by prior exercise with a different muscle group.  J Appl Physiol. 2002;  92 2467-2474
  • 10 Gaesser G A, Poole D C. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-71
  • 11 Gerbino A, Ward S A, Whipp B J. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans.  J Appl Physiol. 1996;  80 99-107
  • 12 Gore C J, Clark R J, Shipp N J, Van Der Ploeg G E, Withers R T. CPX/D underestimates V·O2 in athletes compared with an automated Douglas bag system.  Med Sci Sports Exerc. 2003;  35 1341-1347
  • 13 Hansen J E, Casaburi R, Cooper D M, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise.  Eur J Appl Physiol. 1988;  57 140-145
  • 14 Jacobs I, Esbjornsson M, Sylven C, Holm I, Jansson E. Sprint training effects on muscle myoglobin, enzymes, fiber types, and blood lactate.  Med Sci Sports Exerc. 1987;  19 368-374
  • 15 Jansson E, Esbjornsson M, Holm I, Jacobs I. Increase in the proportion of fast-twitch muscle fibres by sprint training in males.  Acta Physiol Scand. 1990;  140 359-363
  • 16 Komi P V, Rusko H, Vos J, Vihko V. Anaerobic performance capacity in athletes.  Acta Physiol Scand. 1977;  100 107-114
  • 17 Koppo K, Bouckaert J. In humans the oxygen uptake slow component is reduced by prior exercise of high as well as low intensity.  Eur J Appl Physiol. 2000;  83 559-565
  • 18 Koppo K, Bouckaert J. The effect of prior high-intensity cycling exercise on the V·O2 kinetics during high-intensity cycling exercise is situated at the additional slow component.  Int J Sports Med. 2001;  22 21-26
  • 19 Lucia A, Rivero J L, Perez M, Serrano A L, Calbet J A, Santalla A, Chicharro J L. Determinants of V·O2 kinetics at high power outputs during a ramp exercise protocol.  Med Sci Sports Exerc. 2002;  34 326-331
  • 20 Macdonald M, Pedersen P K, Hughson R L. Acceleration of V·O2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise.  J Appl Physiol. 1997;  83 1318-1325
  • 21 Paterson D H, Whipp B J. Asymmetries of oxygen uptake transients at the on- and offset of heavy exercise in humans.  J Physiol. 1991;  443 575-586
  • 22 Pedersen P K, Sorensen J B, Jensen K, Johansen L, Levin K. Muscle fiber type distribution and nonlinear. V·O2-power output relationship in cycling.  Med Sci Sports Exerc. 2002;  34 655-661
  • 23 Poole D C, Barstow T J, Gaesser G A, Willis W T, Whipp B J. V·O2 slow component: physiological and functional significance.  Med Sci Sports Exerc. 1994;  26 1354-1358
  • 24 Pringle J S, Doust J H, Carter H, Tolfrey K, Campbell I T, Jones A M. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation.  Eur J Appl Physiol. 2003;  89 289-300
  • 25 Sargeant A J. Human power output - determinants of maximum performance. Human muscular fonction during dynamic exercise.  Med Sport Sci. 1996;  41 10-20
  • 26 Sharp R L, Costill D L, Fink W J, King D S. Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity.  Int J Sports Med. 1986;  7 13-17
  • 27 Vollestad N K, Blom P C. Effect of varying exercise intensity on glycogen depletion in human muscle fibres.  Acta Physiol Scand. 1985;  125 395-405
  • 28 Whipp B J. The slow component of O2 uptake kinetics during heavy exercise (published erratum appears in Med Sci Sports Exerc 1995; 27: 298).  Med Sci Sports Exerc. 1994;  26 1319-1326
  • 29 Whipp B J, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work.  J Appl Physiol. 1972;  33 351-356
  • 30 Wilkerson D P, Koppo K, Barstow T J, Jones A M. Effect of prior multiple-sprint exercise on pulmonary O2 uptake kinetics following the onset of perimaximal exercise.  J Appl Physiol. 2004;  97 1227-1236
  • 31 Zoladz J A, Duda K, Majerczak J. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.  Eur J Appl Physiol. 1998;  77 445-451
  • 32 Zoladz J A, Duda K, Majerczak J. V·O2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedalling rates: relationship to venous lactate accumulation and blood acid-base balance.  Physiol Res. 1998;  47 427-438
  • 33 Zoladz J A, Rademaker A C, Sargeant A J. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans.  J Physiol. 1995;  488 211-217

A. Marles

Laboratoire d'Analyse Multidisciplinaire des Pratiques Sportives, UFR STPAS de Liévin

Chemin du Marquage

62800 Liévin

France

Phone: + 0321458515

Fax: + 03 21 45 85 01

Email: alexandremarles@yahoo.fr

    >