Abstract
Disturbances in nitric oxide (NO) metabolism resulting in endothelial dysfunction
play a central role in the pathogenesis of atherosclerosis in hypercholesterolemia
and in individuals with type 2 diabetes. It is unclear whether lipid lowering therapy
with HMG-CoA-reductase inhibitors might improve endothelial function in subjects with
type 2 diabetes as it is demonstrated in non-diabetic subjects with hypercholesterolemia.
We examined the influence of 0.2 mg and 0.8 mg cerivastatin on endothelial function
in a multicenter, randomised, double-blind, and three-arm placebo-controlled clinical
trial. Endothelial function was assessed by nitric oxide-dependent flow mediated vasodilatation
(FMD) of the brachial artery. A total of 103 patients with type 2 diabetes were enrolled
in the study. Bayer Company undertook a voluntary action to withdraw cerivastatin
from market, therefore the study was terminated earlier. At this point 77 patients
were randomised, of which 58 completed the study (mean age 60 ± 8 years, HbA1c 7.4
± 0.9 %). At baseline mean FMD was disturbed in all three therapy arms (5.18 ± 2.31
% in the placebo group, 3.88 ± 1.68 in the 0.2-mg cerivastation group, and 4.86 ±
2.25 in the 0.8-mg cerivastatin group). Despite a significant reduction in cholesterol
and LDL-cholesterol-levels after 12 weeks of treatment (decrease in LDL-cholesterol
- 26.8 ± 13.9 % in the 0.2-mg group and - 40.3 ± 16.0 % in the 0.8-mg group, p = 0.0001,
ANCOVA) there was no difference in flow mediated vasodilatation (p = 0.52 and p =
0.56 vs. placebo, respectively, ANCOVA). HbA1c, CRP, and HDL-cholesterol did not change
during the study. Furthermore no difference in safety profile between cerivastatin
and placebo was found. Despite a significant improvement in lipid profile under statin
therapy, no improvement of endothelial dysfunction in terms of nitric oxide bioavailability
could be detected.
Key words
Endothelium - nitric oxide - brachial artery - atherosclerosis - diabetes - endothelial
dysfunction - flow-mediated vasodilation - statin - ultrasound - vascular - vasodilation
- placebo controlled - randomized clinical study - double-blind
References
2
Balletshofer B M, Goebbel S, Rittig Lehn-Stefan K A, Renn W, Enderle M D, Dietz K,
Haering H U.
Influence of experience on intra- and interindividual variability in assessing peripheral
endothelial dysfunction by measurement of flow associated vasodilation with high resolution
ultrasound.
Ultraschall Med.
2001 a;
22
1-5
3
Balletshofer B M, Haring H U.
Type 2-diabetes, insulin resistance and endothelial dysfunction.
Hämostaseologie.
2001 b;
21
159-166
4
Balletshofer B M, Rittig K, Enderle M D, Volk A, Maerker E, Jacob S, Matthaei S, Rett K,
Haring H U.
Endothelial dysfunction is detectable in young normotensive first-degree relatives
of subjects with type 2 diabetes in association with insulin resistance.
Circulation.
2000;
101
1780-1784
5
Balletshofer B M, Rittig K, Stock J, Haring H U.
Indicators of incipient atherosclerosis: Demonstration of endothelial dysfunction
with high-resolution ultrasound.
Ultraschall in der Medizin.
2003;
24
153-161
6
Balletshofer B M, Rittig K, Volk A, Maerker E, Jacob S, Rett K, Haring H U.
Impaired non-esterified fatty acid suppression is associated with endothelial dysfunction
in insulin resistant subjects.
Horm Metab Res.
2001 c;
33
428-431
7
Caballero A E, Arora S, Saouaf R, Lim S C, Smakowski P, Park J Y, King G L, LoGerfo F W,
Horton E S, Veves A.
Microvascular and macrovascular reactivity is reduced in subjects at risk for type
2 diabetes.
Diabetes.
1999;
48
1856-1862
8
Celermajer D S.
Endothelial dysfunction: does it matter? Is it reversible?.
J Am Coll Cardiol.
1997;
30
325-333
9
Celermajer D S, Sorensen K E, Gooch V M, Spiegelhalter D J, Miller O I, Sullivan I D,
Lloyd J K, Deanfield J E.
Non-invasive detection of endothelial dysfunction in children and adults at risk of
atherosclerosis.
Lancet.
1992;
340
1111-1115
10
Collins R, Armitage J, Parish S, Sleight P, Peto R.
Effects of cholesterol-lowering with simvastatin on stroke and other major vascular
events in 20 536 people with cerebrovascular disease or other high-risk conditions.
Lancet.
2004;
363
757-767
11
Corson M A, James N L, Latta S E, Nerem R M, Berk B C, Harrison D G.
Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress.
Circ Res.
1996;
79
984-991
12
Davda R K, Stepniakowski K T, Lu G, Ullian M E, Goodfriend T L, Egan B M.
Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent
mechanism.
Hypertension.
1995;
26
764-770
13
De Caterina R, Libby P, Peng Thannickal H BVJ, Rajavashisth T B, Gimbrone Jr M A,
Shin W S, Liao J K.
Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively
reduces endothelial expression of adhesion molecules and proinflammatory cytokines.
J Clin Invest.
1995;
96
60-68
14
Dimmeler S, Zeiher A M.
Nitric oxide - an endothelial cell survival factor.
Cell Death Differ.
1999;
6
964-968
15
Dupuis J, Tardif J C, Cernacek P, Theroux P.
Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes.
The RECIFE (reduction of cholesterol in ischemia and function of the endothelium)
trial.
Circulation.
1999;
99
3227-3233
16
Economides P A, Caselli A, Tiani E, Khaodhiar L, Horton E S, Veves A.
The effects of atorvastatin on endothelial function in diabetic patients and subjects
at risk for type 2 diabetes.
J Clin Endocrinol Metab.
2004;
89
740-747
17
Fleming I, Busse R.
NO: the primary EDRF.
J Mol Cell Cardiol.
1999;
31
5-14
18
Gaede P, Vedel P, Larsen N, Jensen G V, Parving H H, Pedersen O.
Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.
N Engl J Med.
2003;
348
383-393
19
Garg U C, Hassid A.
Nitric oxide-generating vasodilators inhibit mitogenesis and proliferation of BALB/C
3T3 fibroblasts by a cyclic GMP-independent mechanism.
Biochem Biophys Res Commun.
1990;
171
474-479
20
Glorioso N, Troffa C, Filigheddu F, Dettori F, Soro A, Parpaglia P P, Collatina S,
Pahor M.
Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential
hypertension and primary hypercholesterolemia.
Hypertension.
1999;
34
1281-1286
21
Goode G K, Miller J P, Heagerty A M.
Hyperlipidaemia, hypertension, and coronary heart disease.
Lancet.
1995;
345
362-364
22
Gordon T, Kannel W B, Castelli W P, Dawber T R.
Lipoproteins, cardiovascular disease, and death. The Framingham study.
Arch Intern Med.
1981;
141
1128-1131
23
Hashimoto M, Akita H.
Cerivastatin, a hydroxymethylglutaryl coenzyme a reductase inhibitor, improves endothelial
function in elderly diabetic patients within 3 days.
Circulation.
2002;
105
E30-E31
24
Joannides R, Haefeli W E, Linder Richard L V, Bakkali E H, Thuillez C, Luscher T F.
Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit
arteries in vivo.
Circulation.
1995;
91
1314-1319
25
Masumoto A, Hirooka Y, Hironaga K, Eshima K, Setoguchi S, Egashira K, Takeshita A.
Effect of pravastatin on endothelial function in patients with coronary artery disease
(cholesterol-independent effect of pravastatin).
Am J Cardiol.
2001;
88
1291-1294
26
Muller-Wieland D, Kotzka J, Knebel B, Krone W.
Metabolic syndrome and hypertension: pathophysiology and molecular basis of insulin
resistance.
Basic Res Cardiol.
1998;
93 Suppl 2
131-134
27
Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D,
Symes J F, Fishman M C, Huang P L, Isner J M.
Nitric oxide synthase modulates angiogenesis in response to tissue ischemia.
J Clin Invest.
1998;
101
2567-2578
28
O'Driscoll G, Green D, Taylor R R.
Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function
within 1 month.
Circulation.
1997;
95
1126-1131
29
Radomski M W, Palmer R M, Moncada S.
Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium.
Lancet.
1987;
2
1057-1058
30
Rett K.
The relation between insulin resistance and cardiovascular complications of the insulin
resistance syndrome.
Diabetes Obes Metab.
1999;
1 (Suppl 1)
S8-16
31
Ross R.
Atherosclerosis - an inflammatory disease.
N Engl J Med.
1999;
340
115-126
32
Ross R, Glomset J A.
Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle
is a key event in the genesis of the lesions of atherosclerosis.
Science.
1973;
180
1332-1339
33
Sacks F M, Pfeffer M A, Moye L A, Rouleau J L, Rutherford J D, Cole T G, Brown L,
Warnica J W, Arnold J M, Wun C C, Davis B R, Braunwald E.
The effect of pravastatin on coronary events after myocardial infarction in patients
with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators.
N Engl J Med.
1996;
335
1001-1009
34
Sdringola S, Nakagawa K, Nakagawa Y, Yusuf S W, Boccalandro F, Mullani N, Haynie M,
Hess M J, Gould K L.
Combined intense lifestyle and pharmacologic lipid treatment further reduce coronary
events and myocardial perfusion abnormalities compared with usual-care cholesterol-lowering
drugs in coronary artery disease.
J Am Coll Cardiol.
2003;
41
263-272
35
Sheu W H, Juang B L, Chen Y T, Lee W J.
Endothelial dysfunction is not reversed by simvastatin treatment in type 2 diabetic
patients with hypercholesterolemia [letter].
Diabetes Care.
1999;
22
1224-1225
36
Stein J H, Carlsson C M.
Cerivastatin and endothelial function in elderly patients with diabetes mellitus.
Circulation.
2002;
105
E32-E33
37
Stratton I M, Adler A I, Neil Matthews H ADR, Manley S E, Cull C A, Hadden D, Turner R C,
Holman R R.
Association of glycaemia with macrovascular and microvascular complications of type
2 diabetes (UKPDS 35): prospective observational study [see comments].
BMJ.
2000;
321
405-412
38
Stroes E S, Koomans H A, de Bruin T W, Rabelink T J.
Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering
medication.
Lancet.
1995;
346
467-471
39
Taniguchi N, Kaneto H, Asahi M, Takahashi M, Wenyi C, Higashiyama S, Fujii J, Suzuki K,
Kayanoki Y.
Involvement of glycation and oxidative stress in diabetic macroangiopathy.
Diabetes.
1996;
45 (Suppl 3)
S81-S83
40
Tesfamariam B.
Free radicals in diabetic endothelial cell dysfunction.
Free Radic Biol Med.
1994;
16
383-391
41
Tesfamariam B, Cohen R A.
Free radicals mediate endothelial cell dysfunction caused by elevated glucose.
Am J Physiol.
1992;
263
H321-H326
42
Thomason M J, Colhoun H M, Livingstone S J, Mackness M I, Betteridge D J, Durrington P N,
Hitman G A, Neil H A, Fuller J H.
Baseline characteristics in the Collaborative AtoRvastatin Diabetes Study (CARDS)
in patients with Type 2 diabetes.
Diabet Med.
2004;
21
901-905
1
Tonkin A, Simes R J.
Prevention of cardiovascular events and death with pravastatin in patients with coronary
heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention
with Pravastatin in Ischaemic Disease (LIPID) Study Group.
N Engl J Med.
1998;
339
1349-1357
43
Tsunekawa T, Hayashi T, Kano H, Sumi D, Matsui-Hirai H, Thakur N K, Egashira K, Iguchi A.
Cerivastatin, a hydroxymethylglutaryl coenzyme a reductase inhibitor, improves endothelial
function in elderly diabetic patients within 3 days.
Circulation.
2001;
104
376-379
44
Vallance P, Collier J, Moncada S.
Nitric oxide synthesised from L-arginine mediates endothelium dependent dilatation
in human veins in vivo.
Cardiovasc Res.
1989;
23
1053-1057
45
van Etten R W, de Koning E J, Honing M L, Stroes E S, Gaillard C A, Rabelink T J.
Intensive lipid lowering by statin therapy does not improve vasoreactivity in patients
with type 2 diabetes.
Arterioscler Thromb Vasc Biol.
2002;
22
799-804
46
van Venrooij F V, van de Ree M A, Bots M L, Stolk R P, Huisman M V, Banga J D.
Aggressive lipid lowering does not improve endothelial function in type 2 diabetes:
the Diabetes Atorvastatin Lipid Intervention (DALI) Study: a randomized, double-blind,
placebo-controlled trial.
Diabetes Care.
2002;
25
1211-1216
47
Viberti G.
The need for tighter control of cardiovascular risk factors in diabetic patients.
J Hypertens Suppl.
2003;
21 (Suppl 1)
S3-S6
48
Wendelhag I, Gustavsson T, Suurkula M, Berglund G, Wikstrand J.
Ultrasound measurement of wall thickness in the carotid artery: fundamental principles
and description of a computerized analysing system.
Clin Physiol.
1991;
11
565-577
Bernd M. Balletshofer
Department of Internal Medicine/Endocinology and Vascular Medicine University of Tübingen
Otfried-Müller-Straße 10
72076 Tübingen
Germany
Phone: + 49(0)70712982714
Fax: + 49 (0) 70 71 29 50 22
Email: Bernd.Balletshofer@med.uni-tuebingen.de