Semin Liver Dis 2004; 24(4): 335-347
DOI: 10.1055/s-2004-860863
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Gut Peptides and Other Regulators in Obesity

Matthew T. Scharf1 , Rexford S. Ahima1 , 2
  • 1University of Pennsylvania School of Medicine, Division of Endocrinology, Diabetes and Metabolism; and the Neuroscience Graduate Group, Philadelphia, Pennsylvania
  • 2Assistant Professor of Medicine; Director of the Weight Management & Metabolism Program, Presbyterian Medical Center, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
16 December 2004 (online)

ABSTRACT

Obesity has reached epidemic levels in industrialized countries and is increasing worldwide. This trend has serious public health consequences, since obesity increases the risk of diabetes, hypertension, heart disease, sleep apnea, cancer, arthritis, cholelithiasis, fatty liver disease, and other complications. Obesity is the result of an imbalance between energy intake and expenditure; hence, an understanding of how gastrointestinal function is integrated with the hormonal regulation of energy balance is pertinent to the pathophysiology of obesity. Nutrients, peptides, and neural afferents from the gut influence the size and frequency of meals and satiety. The long-term regulation of energy stores is mediated primarily through the actions of adiposity hormones, such as leptin and insulin, in the hypothalamus and other neuronal circuits in the brain. Efforts are underway to determine how these peripheral and central pathways may be targeted for treatment of obesity and related diseases.

REFERENCES

  • 1 Hedley A A, Ogden C L, Johnson C L, Carroll M D, Curtin L R, Flegal K M. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002.  JAMA. 2004;  291 2847-2850
  • 2 Ogden C L, Flegal K M, Carroll M D, Johnson C L. Prevalence and trends in overweight among US children and adolescents, 1999-2000.  JAMA. 2002;  288 1728-1732
  • 3 Kopelman P G. Obesity as a medical problem.  Nature. 2000;  404 635-643
  • 4 Calle E E, Thun M J, Petrelli J M, Rodriguez C, Heath Jr C W. Body-mass index and mortality in a prospective cohort of U. S. adults.  N Engl J Med. 1999;  341 1097-1105
  • 5 Ahima R S, Flier J S. Adipose tissue as an endocrine organ.  Trends Endocrinol Metab. 2000;  11 327-332
  • 6 Unger R H. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome.  Endocrinology. 2003;  144 5159-5165
  • 7 Barsh G S, Farooqi I S, O'Rahilly S. Genetics of body-weight regulation.  Nature. 2000;  404 644-651
  • 8 Zimmet P, Alberti K G, Shaw J. Global and societal implications of the diabetes epidemic.  Nature. 2001;  414 782-787
  • 9 Kennedy G C. The role of depot fat in the hypothalamic control of food intake in the rat.  Proc R Soc Lond B Biol Sci. 1953;  140 578-596
  • 10 Harris R B, Martin R J. Specific depletion of body fat in parabiotic partners of tube-fed obese rats.  Am J Physiol. 1984;  247 R380-R386
  • 11 Hervey G R. The effects of lesions in the hypothalamus in parabiotic rats.  J Physiol. 1959;  145 336-352
  • 12 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 425-432 , Erratum in: Nature. 1995;  374 479
  • 13 Chen H, Charlat O, Tartaglia L A et al.. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice.  Cell. 1996;  84 491-495
  • 14 Flier J S. Obesity wars: molecular progress confronts an expanding epidemic.  Cell. 2004;  116 337-350
  • 15 Elmquist J K, Elias C F, Saper C B. From lesions to leptin: hypothalamic control of food intake and body weight.  Neuron. 1999;  22 221-232
  • 16 Ahima R S, Osei S Y. Molecular regulation of eating behavior: new insights and prospects for therapeutic strategies.  Trends Mol Med. 2001;  7 205-213
  • 17 Mayer J. Glucostatic mechanism of regulation of food intake.  N Engl J Med. 1953;  249 13-16
  • 18 Thompson D A, Campbell R G. Hunger in humans induced by 2-deoxy-D-glucose: glucoprivic control of taste preference and food intake.  Science. 1977;  198 1065-1068
  • 19 Oomura Y, Ono T, Ooyama H, Wayner M J. Glucose and osmosensitive neurones of the rat hypothalamus.  Nature. 1969;  222 282-284
  • 20 Bergen H T, Monkman N, Mobbs C V. Injection with gold thioglucose impairs sensitivity to glucose: evidence that glucose-responsive neurons are important for long-term regulation of body weight.  Brain Res. 1996;  734 332-336
  • 21 Novin D, VanderWeele D A, Rezek M. Infusion of 2-deoxy-D-glucose into the hepatic-portal system causes eating: evidence for peripheral glucoreceptors.  Science. 1973;  181 858-860
  • 22 Bray G A. Amino acids, protein, and body weight.  Obes Res. 1997;  5 373-376
  • 23 Fernstrom J D, Wurtman R J. Brain serotonin content: physiological dependence on plasma tryptophan levels.  Science. 1971;  173 149-152
  • 24 Kasser T R, Harris R B, Martin R J. Level of satiety: fatty acid and glucose metabolism in three brain sites associated with feeding.  Am J Physiol. 1985;  248 R447-R452
  • 25 Sergeyev V, Broberger C, Gorbatyuk O, Hokfelt T. Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus.  Neuroreport. 2000;  11 117-121
  • 26 Friedman M I, Harris R B, Ji H, Ramirez I, Tordoff M G. Fatty acid oxidation affects food intake by altering hepatic energy status.  Am J Physiol. 1999;  276 R1046-R1053
  • 27 Nagase H, Bray G A, York D A. Effects of pyruvate and lactate on food intake in rat strains sensitive and resistant to dietary obesity.  Physiol Behav. 1996;  59 555-560
  • 28 Tso P, Liu M, Kalogeris T J. The role of apolipoprotein A-IV in food intake regulation.  J Nutr. 1999;  129 150-156
  • 29 Kojima M, Hosoda H, Matsuo H, Kangawa K. Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor.  Trends Endocrinol Metab. 2001;  12 118-122
  • 30 Tschop M, Smiley D L, Heiman M L. Ghrelin induces adiposity in rodents.  Nature. 2000;  407 908-913
  • 31 Cummings D E, Weigle D S, Frayo R S et al.. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.  N Engl J Med. 2002;  346 1623-1630
  • 32 Holdstock C, Engstrom B E, Ohrvall M, Lind L, Sundbom M, Karlsson F A. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans.  J Clin Endocrinol Metab. 2003;  88 3177-3183
  • 33 Cowley M A, Smith R G, Diano S et al.. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.  Neuron. 2003;  37 649-661
  • 34 Chen H Y, Trumbauer M E, Chen A S et al.. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein.  Endocrinology. 2004;  145 2607-2612
  • 35 Sun Y, Ahmed S, Smith R G. Deletion of ghrelin impairs neither growth nor appetite.  Mol Cell Biol. 2003;  23 7973-7981
  • 36 Sun Y, Wang P, Zheng H, Smith R G. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor.  Proc Natl Acad Sci USA. 2004;  101 4679-4684
  • 37 Smith G P, Gibbs J. Satiating effect of cholecystokinin.  Ann N Y Acad Sci. 1994;  713 236-241
  • 38 Moran T H, Katz L F, Plata-Salaman C R, Schwartz G J. Disordered food intake and obesity in rats lacking cholecystokinin A receptors.  Am J Physiol. 1998;  274 R618-R625
  • 39 Kopin A S, Mathes W F, McBride E W et al.. The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight.  J Clin Invest. 1999;  103 383-391 , Erratum in: J Clin Invest 1999;103:759
  • 40 Berglund M M, Hipskind P A, Gehlert D R. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes [review].  Exp Biol Med (Maywood). 2003;  228 217-244
  • 41 Batterham R L, Cowley M A, Small C J et al.. Gut hormone PYY(3-36) physiologically inhibits food intake.  Nature. 2002;  418 650-654
  • 42 Batterham R L, Cohen M A, Ellis S M et al.. Inhibition of food intake in obese subjects by peptide YY3-36.  N Engl J Med. 2003;  349 941-948
  • 43 Tschop M, Castaneda T R, Joost H G et al.. Physiology: does gut hormone PYY3-36 decrease food intake in rodents?.  Nature. 2004;  430 165-167 , Erratum in Nature. 2004;  431 1038 , Withcomb, DC [corrected to Whitcomb, DC]
  • 44 Clark J T, Sahu A, Kalra P S, Balasubramaniam A, Kalra S P. Neuropeptide Y (NPY)-induced feeding behavior in female rats: comparison with human NPY ([Met17]NPY), NPY analog ([norLeu4]NPY) and peptide YY.  Regul Pept. 1987;  17 31-39
  • 45 Stanley B G, Daniel D R, Chin A S, Leibowitz S F. Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion.  Peptides. 1985;  6 1205-1211
  • 46 Kanatani A, Mashiko S, Murai N et al.. Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice.  Endocrinology. 2000;  141 1011-1016
  • 47 Jia B Q, Taylor I L. Failure of pancreatic polypeptide release in congenitally obese mice.  Gastroenterology. 1984;  87 338-343
  • 48 Asakawa A, Inui A, Yuzuriha H et al.. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance.  Gastroenterology. 2003;  124 1325-1336
  • 49 Ueno N, Inui A, Iwamoto M et al.. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice.  Gastroenterology. 1999;  117 1427-1432
  • 50 Batterham R L, Le Roux C W, Cohen M A et al.. Pancreatic polypeptide reduces appetite and food intake in humans.  J Clin Endocrinol Metab. 2003;  88 3989-3992
  • 51 Berntson G G, Zipf W B, O'Dorisio T M, Hoffman J A, Chance R E. Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome.  Peptides. 1993;  14 497-503
  • 52 Holst J J. Glucagon-like Peptide 1 (GLP-1): an intestinal hormone, signalling nutritional abundance, with an unusual therapeutic potential.  Trends Endocrinol Metab. 1999;  10 229-235
  • 53 Verdich C, Flint A, Gutzwiller J P et al.. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans.  J Clin Endocrinol Metab. 2001;  86 4382-4389
  • 54 Nauck M A, Kleine N, Orskov C, Holst J J, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (noninsulin-dependent) diabetic patients.  Diabetologia. 1993;  36 741-744
  • 55 Turton M D, O'Shea D, Gunn I et al.. A role for glucagon-like peptide-1 in the central regulation of feeding.  Nature. 1996;  379 69-72
  • 56 Drucker D J, Lovshin J, Baggio L et al.. New developments in the biology of the glucagon-like peptides GLP-1 and GLP-2.  Ann N Y Acad Sci. 2000;  921 226-232
  • 57 Scrocchi L A, Hill M E, Saleh J, Perkins B, Drucker D J. Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action.  Diabetes. 2000;  49 1552-1560
  • 58 Tang-Christensen M, Larsen P J, Thulesen J, Romer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake.  Nat Med. 2000;  6 802-807
  • 59 Dakin C L, Gunn I, Small C J et al.. Oxyntomodulin inhibits food intake in the rat.  Endocrinology. 2001;  142 4244-4250
  • 60 Baggio L L, Huang Q, Brown T J, Drucker D J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure.  Gastroenterology. 2004;  127 546-558
  • 61 Cohen M A, Ellis S M, Le Roux C W et al.. Oxyntomodulin suppresses appetite and reduces food intake in humans.  J Clin Endocrinol Metab. 2003;  88 4696-4701
  • 62 Meier J J, Nauck M A, Schmidt W E, Gallwitz B. Gastric inhibitory polypeptide: the neglected incretin revisited.  Regul Pept. 2002;  107 1-13
  • 63 Gault V A, Flatt P R, O'Harte F P. Glucose-dependent insulinotropic polypeptide analogues and their therapeutic potential for the treatment of obesity-diabetes.  Biochem Biophys Res Commun. 2003;  308 207-213
  • 64 Gault V A, O'Harte F P, Flatt P R. Glucose-dependent insulinotropic polypeptide (GIP): anti-diabetic and anti-obesity potential?.  Neuropeptides. 2003;  37 253-263
  • 65 Miyawaki K, Yamada Y, Ban N et al.. Inhibition of gastric inhibitory polypeptide signaling prevents obesity.  Nat Med. 2002;  8 738-742
  • 66 Yamada K, Wada E, Santo-Yamada Y, Wada K. Bombesin and its family of peptides: prospects for the treatment of obesity.  Eur J Pharmacol. 2002;  440 281-290
  • 67 Gutzwiller J P, Drewe J, Hildebrand P, Rossi L, Lauper J Z, Beglinger C. Effect of intravenous human gastrin-releasing peptide on food intake in humans.  Gastroenterology. 1994;  106 1168-1173
  • 68 Ohki-Hamazaki H, Watase K, Yamamoto K et al.. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity.  Nature. 1997;  390 165-169
  • 69 Hoppener J W, Ahren B, Lips C J. Islet amyloid and type 2 diabetes mellitus.  N Engl J Med. 2000;  343 411-419
  • 70 Reda T K, Geliebter A, Pi-Sunyer F X. Amylin, food intake, and obesity.  Obes Res. 2002;  10 1087-1091
  • 71 Erlanson-Albertsson C, York D. Enterostatin-a peptide regulating fat intake.  Obes Res. 1997;  5 360-372
  • 72 Lin L, York D A. Amygdala enterostatin induces c-Fos expression in regions of hypothalamus that innervate the PVN.  Brain Res. 2004;  1020 147-153
  • 73 Ahima R S, Flier J S. Leptin.  Annu Rev Physiol. 2000;  62 413-437
  • 74 Coleman D L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice.  Diabetologia. 1978;  14 141-148
  • 75 Flier J S. Clinical review 94: What's in a name? In search of leptin's physiologic role.  J Clin Endocrinol Metab. 1998;  83 1407-1413
  • 76 Erickson J C, Hollopeter G, Palmiter R D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y.  Science. 1996;  274 1704-1707
  • 77 Segal-Lieberman G, Bradley R L, Kokkotou E et al.. Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype.  Proc Natl Acad Sci U S A. 2003;  100 10085-10090
  • 78 Ahima R, Osei S Y. Leptin and appetite control in lipodystrophy.  J Clin Endocrinol Metab. 2004;  89 4254-4257
  • 79 Howard J K, Cave B J, Oksanen L J, Tzameli I, Bjorback C, Flier J S. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3.  Nat Med. 2004;  10 734-738
  • 80 Mori H, Hanada R, Hanada T et al.. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity.  Nat Med. 2004;  10 739-743
  • 81 Zabolotny J M, Bence-Hanulec K K, Stricker-Krongrad A et al.. PTP1B regulates leptin signal transduction in vivo.  Dev Cell. 2002;  2 489-495
  • 82 Cheng A, Uetani N, Simoncic P D et al.. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B.  Dev Cell. 2002;  2 497-503
  • 83 Schwartz M W, Figlewicz D P, Baskin D G, Woods S C, Porte Jr D. Insulin in the brain: a hormonal regulator of energy balance.  Endocr Rev. 1992;  13 387-414
  • 84 Benoit S C, Air E L, Coolen L M et al.. The catabolic action of insulin in the brain is mediated by melanocortins.  J Neurosci. 2002;  22 9048-9052
  • 85 Bruning J C, Gautam D, Burks D J et al.. Role of brain insulin receptor in control of body weight and reproduction.  Science. 2000;  289 2122-2125
  • 86 Niswender K D, Morrison C D, Clegg D J et al.. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia.  Diabetes. 2003;  52 227-231
  • 87 Niswender K D, Schwartz M W. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities.  Front Neuroendocrinol. 2003;  24 1-10
  • 88 Berg A H, Combs T P, Scherer P E. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism.  Trends Endocrinol Metab. 2002;  13 84-89
  • 89 Maeda N, Shimomura I, Kishida K et al.. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.  Nat Med. 2002;  8 731-737
  • 90 Kubota N, Terauchi Y, Yamauchi T et al.. Disruption of adiponectin causes insulin resistance and neointimal formation.  J Biol Chem. 2002;  277 25863-25866
  • 91 Yamauchi T, Kamon J, Minokoshi Y et al.. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.  Nat Med. 2002;  8 1288-1295
  • 92 Goldstein B J, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function.  J Clin Endocrinol Metab. 2004;  89 2563-2568
  • 93 Yamauchi T, Kamon J, Ito Y et al.. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.  Nature. 2003;  423 762-769
  • 94 Hug C, Wang J, Ahmad N S, Gogan J S, Tsao T S, Lodish H F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin.  Proc Natl Acad Sci U S A. 2004;  101 10308-10313
  • 95 Steppan C M, Lazar M A. The current biology of resistin.  J Intern Med. 2004;  255 439-447
  • 96 Rajala M W, Qi Y, Patel H R et al.. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting.  Diabetes. 2004;  53 1671-1679
  • 97 Steppan C M, Bailey S T, Bhat S et al.. The hormone resistin links obesity to diabetes.  Nature. 2001;  409 307-312
  • 98 Rajala M W, Obici S, Scherer P E, Rossetti L. Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production.  J Clin Invest. 2003;  111 225-230
  • 99 Banerjee R R, Rangwala S M, Shapiro J S et al.. Regulation of fasted blood glucose by resistin.  Science. 2004;  303 1195-1198
  • 100 Wellen K E, Hotamisligil G S. Obesity-induced inflammatory changes in adipose tissue.  J Clin Invest. 2003;  112 1785-1788
  • 101 Moller D E. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes.  Trends Endocrinol Metab. 2000;  11 212-217
  • 102 Wallenius V, Wallenius K, Ahren B et al.. Interleukin-6-deficient mice develop mature-onset obesity.  Nat Med. 2002;  8 75-79

Rexford S AhimaM.D. Ph.D. 

University of Pennsylvania School of Medicine, Division of Endocrinology, Diabetes and Metabolism

764 Clinical Research Building, 415 Curie Blvd

Philadelphia, PA 19104

Email: ahima@mail.med.upenn.edu

    >