Semin Speech Lang 2004; 25(4): 309-321
DOI: 10.1055/s-2004-837244
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Neuropharmacology of Verbal Perseveration

Patrick McNamara1 , Martin L. Albert2
  • 1Department of Neurology, Boston University School of Medicine; VA New England Healthcare System, Boston, Massachusetts
  • 2Harold Goodglass Aphasia Research Center and Language in the Aging Brain Laboratory, Department of Neurology, Boston University School of Medicine and VA New England Healthcare System, Boston, Massachusetts
Further Information

Publication History

Publication Date:
15 December 2004 (online)

ABSTRACT

In this article we will review available evidence concerning the effects of forebrain catecholaminergic and cholinergic activity on verbal perseveration. The anatomy and physiology of these two major neuropharmacological systems make it likely that they influence speech and language functioning directly as well as the cognitive systems that have an indirect impact on speech and language functions. Both catecholaminergic and cholinergic agents have been shown to influence executive cognitive functions (ECFs) such as “resistance to interference” and “attentional switching” as well as mnemonic encoding and retrieval processes. The ECF effects are most likely mediated by prefrontal cortex; mnemonic processes are mediated by both prefrontal and temporal lobes. Although no full-scale clinical trials on the effects of pharmacological agents on verbal perseveration have been conducted as yet, existing preclinical trials suggest that both presynaptic and postsynaptic dopaminergic agents can reduce perseverative responding by increasing inhibitory control processes. Cholinesterase inhibitors and other cholinergic agents can reduce perseverative responding by reducing verbal intrusions.

REFERENCES

  • 1 Albert M, Sandson J. Perseveration in aphasia.  Cortex. 1986;  22 103-115
  • 2 Yamdori A. Verbal perseveration in aphasia.  Neuropsychologia. 1981;  18 591-594
  • 3 Santo-Pietro M J, Rigrodsky S. The effects of temporal and semantic conditions on the occurrence of the error response of perseveration in adult aphasics.  J Speech Hear Res. 1982;  25 184-192
  • 4 Emery P, Helm-Estabrooks N. The role of perseveration in aphasic confrontation naming performance.  Proceedings of Clinical Aphasiology. 1989;  18 64-83
  • 5 Bayles K A, Tomoeda C K, Kaszniak A W, Stern L Z, Eagans K K. Verbal perseveration of dementia patients.  Brain Lang. 1985;  25 102-116
  • 6 Barr W B, Bilder R M, Goldberg E, Kaplan E, Mukherjee S. The neuropsychology of schizophrenic speech.  J Commun Disord. 1989;  22 327-349
  • 7 DeLisi L E. Speech disorder in schizophrenia: review of the literature and exploration of its relation to the uniquely human capacity of language.  Schizophr Bull. 2001;  27 481-496
  • 8 Bayles K A, Trosset M W, Tomoeda C K, Montgomery E B, Wilson J. Generative naming in Parkinson disease patients.  J Clin Neuropsychol. 1993;  15 547-562
  • 9 Benke T, Hohenstein C, Poewe W, Butterworth B. Repetitive speech phenomena in Parkinson's disease.  J Neurol Neurosurg Psychiatry. 2000;  69 319-325
  • 10 Butters M, Goldstein G, Allen D, Shemansky W. Neuropsychological similarities and differences among Huntington's disease, multiple sclerosis, and cortical dementia.  Arch Clin Neuropsychol. 1998;  13 721-735
  • 11 Ridley R M. The psychology of perseverative and stereotyped behavior.  Prog Neurobiol. 1994;  44 221-231
  • 12 Hotz G, Helm-Estabrooks N. Perseveration. Part II. A study of perseveration in closed-head injury.  Brain Inj. 1995;  9 160-171
  • 13 Lombardi W, Andreason P, Sirocco K et al.. Wisconsin Card Sorting Test performance following head injury: Dorsolateral fronto-striatal circuit activity predicts perseveration.  J Clin Exp Neuropsychol. 1999;  21 2-16
  • 14 Sayles D G. Cortical excitability, perseveration and stuttering.  J Speech Hear Res. 1971;  14 462-475
  • 15 Aman M G. Review of serotonergic agents and perseverative behavior in patients with developmental disabilities.  Ment Retard Dev Disabil Res Rev. 1999;  5 279-289
  • 16 Branford D, Bhaumik S, Naik B. Selective serotonin re-uptake inhibitors for the treatment of perseverative and maladaptive behaviours of people with intellectual disability.  J Intellect Disabil Res. 1998;  42 301-306
  • 17 Davis R, Nolen-Hoeksema S. Cognitive inflexibility among ruminators and nonruminators.  Cognit Ther Res. 2000;  24 699-711
  • 18 Fibiger H C. The organization and some projections of cholinergic neurons of the mammalian forebrain.  Brain Res. 1982;  257 327-388
  • 19 Semba K, Fibiger H C. Organization of central cholinergic systems.  Prog Brain Res. 1989;  79 37-63
  • 20 Mesulam M-M. Central cholinergic pathways: neuroanatomy and some behavioral implications. In: Anoli M, Reader TA, Dykes RW, Gloor P Neurotransmitters and Cortical Functions. New York; Plenum 1988: 237-260
  • 21 Everitt B J, Robbins T W. Central cholinergic systems and cognition.  Annu Rev Psychol. 1997;  48 649-684
  • 22 Auld D S, Kornecook T J, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies.  Prog Neurobiol. 2002;  68 209-245
  • 23 Bowen D M, Smith C B, White P, Davison A N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies.  Brain. 1976;  99 459-496
  • 24 Perry E K, Tomlinson B E, Blessed G et al.. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.  BMJ. 1978;  2 1457-1459
  • 25 Foote S, Morrison J. Extrathalamic modulation of cortical function.  Annu Rev Neurosci. 1987;  10 67-95
  • 26 Amaducci L, Sorbi S, Albanese A, Gainotti G. Choline acetyltranserferase (ChAT) activity differs in right and left human temporal lobes.  Neurology. 1981;  31 799-805
  • 27 Glick S, Ross D, Hough L. Lateral asymmetry of neurotransmitters in human brain.  Brain Res. 1982;  234 53-63
  • 28 Hutsler J J, Gazzaniga M S. Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features.  Cereb Cortex. 1996;  6 260-270
  • 29 Goldman-Rakic P. Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Mountcastle V, Plum F Higher Cortical Function, Handbook of Physiology. Bethesda, MD; American Physiological Society 1987: 373-417
  • 30 Le Moal M, Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles.  Physiol Rev. 1991;  71 155-234
  • 31 Lewis D A. The catecholaminergic innervation of primate prefrontal cortex.  J Neural Transm Suppl. 1992;  36 179-200
  • 32 Tzschentke T M. Pharmacology and behavioral pharmacology of the mesocortical dopamine system.  Prog Neurobiol. 2001;  63 241-320
  • 33 Nieoullon A. Dopamine and the regulation of cognition and attention.  Prog Neurobiol. 2002;  67 53-83
  • 34 Oke A, Keller R, Mefford I, Adams R. Lateralization of norepinephrine in human thalamus.  Science. 1978;  200 1411-1413
  • 35 Berridge C W, Espana R A, Stalnaker T A. Stress and coping: asymmetry of dopamine efferents within the prefrontal cortex. In: Hugdahl K, Davidson RJ The Asymmetrical Brain. Cambridge, MA; The MIT Press 2003: 69-104
  • 36 Pizzagalli D, Shackman A J, Davidson R J. The functional neuroimaging of human emotion: asymmetric contributions of cortical and subcortical circuitry. In: Hugdahl K, Davidson RJ The Asymmetrical Brain. Cambridge, MA; The MIT Press 2003: 511-532
  • 37 Coull J T. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology.  Prog Neurobiol. 1998;  55 343-361
  • 38 Arnsten A FT. Catecholamine modulation of prefrontal cortical cognitive function.  Trends Cogn Sci. 1998;  2 436-447
  • 39 Arnsten A FT, Goldman-Rakic P S. Alpha adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged non-human primates.  Science. 1985;  230 1273-1276
  • 40 Sara S J, Herve-Minville A. Inhibitory influence of frontal cortex on locus coeruleus.  Proc Natl Acad Sci USA. 1995;  92 6032-6036
  • 41 Berridge C W, Arnsten A, Foote S. Noradrenergic modulation of cognitive function.  Psychol Med. 1993;  23 557-564 , (editorial)
  • 42 D’Esposito M, Albert M L. Pharmacology of memory. In: Memoire et Vieillissement Paris; Maloine Editeur 1991: 247-252
  • 43 Levin ED, Decker MW, Butcher LL Neurotransmitter Interactions and Cognitive Function. Boston; Birkhauser 1992
  • 44 Terry A V, Jackson W J, Buccafusco J J. Effects of concomitant cholinergic and adrenergic stimulation on learning and memory performance by young and aged monkeys.  Cereb Cortex. 1993;  3 304-312
  • 45 Friedman J I, Temporini H, Davis K L. Pharmacologic strategies for augmenting cognitive performance in schizophrenia.  Biol Psychiatry. 1999;  45 1-16
  • 46 Sandson J, Albert M. Perseveration in behavioral neurology.  Neurology. 1987;  37 1736-1741
  • 47 Morton J B, Munakata Y. Active versus latent representations: a neural network model of perseveration, dissociation and decalage.  Dev Psychobiol. 2002;  40 255-265
  • 48 Cohen L, Dehaene S. Competition between past and present: assessment and interpretation of verbal perseverations.  Brain. 1998;  121 1641-1659
  • 49 Gotts S J, della Rocchetta A I, Cipolotti L. Mechanisms underlying perseveration in aphasia: evidence from a single case study.  Neuropsychologia. 2002;  40 1930-1947
  • 50 Brozoski T, Brown R, Rosvold H, Goldman P. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey.  Science. 1979;  205 929-931
  • 51 Watanabe M, Kodama T, Hikosaka K. Increase in extracellular dopamine in the primate prefrontal cortex during a working memory task.  J Neurophysiol. 1997;  78 2795-2798
  • 52 Gotham A, Brown R, Marsden C. “Frontal” cognitive functions in patients with Parkinson's disease “on” and “off” levodopa.  Brain. 1988;  111 299-321
  • 53 Cools A, Berger H, Buytenhuijs E, Horstink M, Van Spaendonck K. Manifestations of switching disorders in animals and man with dopamine deficits in A10 and/or A9 circuitries. In: Wolters E, Scheltens P Mental Dysfunction in Parkinson's Disease. Dordrecht, The Netherlands; ICG 1995: 49-68
  • 54 Lange K W, Paul G M, Naumann M, Gesell W. Dopaminergic effects on cognitive performance in patients with Parkinson's disease.  J Neural Transm Suppl. 1995;  46 423-432
  • 55 Taylor A, Saint-Cyr J. The neuropsychology of Parkinson's disease.  Brain Cogn. 1995;  28 281-296
  • 56 Downes J, Sharp H, Costall B, Sagar H, Howe J. Alternating fluency in Parkinson's disease: an evaluation of the attentional control theory of cognitive impairment.  Brain. 1993;  116 887-902
  • 57 Lange K W, Robbins T W, Marsden C D et al.. L-dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction.  Psychopharmacology (Berl). 1992;  107 394-404
  • 58 Callaway E, Halliday R, Naylor H. Cholinergic activity and constraints on information processing.  Biol Psychiatry. 1992;  33 1-22
  • 59 Meador K J. An overview of neurotransmitters in cognitive function. In: Pharmacology of Cognition. Half-day course presented at the 49th Annual Meeting of the American Academy of Neurology Boston, MA; April 15-22, 1997
  • 60 Rusted J M, Warburton D M. Cognitive models and cholinergic drugs.  Neuropsychobiology. 1989;  21 31-36
  • 61 Arnsten A FT, Steere J C, Hunt R D. The contribution of alpha-2 noradrenergic mechanisms to prefrontal cortical cognitive function.  Arch Gen Psychiatry. 1996;  53 448-455
  • 62 Stern Y, Mayeux R, Cote L. Reaction time and vigilance in Parkinson's disease. Possible role of altered norepinephrine metabolism.  Arch Neurol. 1984;  41 1086-1089
  • 63 Mayeux R, Stern Y, Sano M, Cote L, Williams J BW. Clinical and biochemical correlates of bradyphrenia in Parkinson's disease.  Neurology. 1987;  37 1130-1134
  • 64 Riekkinen M, Kejonen K, Jakala P, Soininen H, Riekkinen Jr P. Reduction of noradrenaline impairs attention and dopamine depletion slows responses in Parkinson's disease.  Eur J Neurosci. 1998;  10 1429-1435
  • 65 Kuiper M A, Wolters E C. CSF biochemistry in Parkinson's disease patients with mental dysfunction. In: Wolters E, Scheltens P Mental Dysfunction in Parkinson's Disease. Dordrecht, The Netherlands; ICG 1995: 163-176
  • 66 McGurk S R. The effects of clozapine on cognitive functioning in schizophrenia.  J Clin Psychiatry. 1999;  6(Suppl 12) 24-30
  • 67 Green M, Marshall B, Wirshing W et al.. Does risperidone improve verbal working memory in treatment resistant schizophrenia?.  Am J Psychiatry. 1997;  154 799-804
  • 68 McGurk S, Green M, Wirshing W et al.. The effects of risperidone vs. haloperidol in treatment-resistant schizophrenia: The trail-making test.  CNS Spectr. 1997;  2 60-64
  • 69 Buchanan R W, Holstein C, Breier A. The comparative efficacy and long term effect of clozapine treatment on neuropsychological test performance.  Biol Psychiatry. 1994;  36 717-725
  • 70 Hoff A, Faustman W, Wieneke M et al.. The effect of clozapine on symptom reduction, neurocognitive function and clinical management in treatment refractory state hospital schizophrenic inpatients.  Neuropsychopharmacology. 1996;  15 361-369
  • 71 Murphy B, Arnsten A FT, Goldman-Rakic P S, Roth R H. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys.  Proc Natl Acad Sci USA. 1996;  93 1325-1329
  • 72 Kulisevsky J, Avial A, Barbanoj M et al.. Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson's disease patients at different levodopa plasma levels.  Brain. 1996;  119 2121-2132
  • 73 Whitehouse P J, Price D L, Clark A W, Coyle J T, DeLong J T. Alzheimer's disease: evidence for a selective loss of cholinergic neurons in the nucleus basalis.  Ann Neurol. 1981;  10 122-126
  • 74 Bartus R T, Dean R L, Flicker C. Cholinergic psychopharmacology: an integration of human and animal research on memory. In: Meltzer HY Psychopharmacology: The Third Generation of Progress. New York; Raven Press 1987: 219-232
  • 75 Davis K L, Thal L J, Gamzu E R et al.. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer's disease.  N Engl J Med. 1992;  327 1253-1259
  • 76 Farlow M R, Evans R M. Pharmacologic treatment of cognition in Alzheimer's dementia.  Neurology. 1998;  51(Suppl 1) S36-S44
  • 77 DeKosky S T. Treatment of cognitive impairments in Alzheimer's disease. In: Pharmacology of Cognition. Education program syllabus presented at the 51st Annual Meeting of the American Academy of Neurology Toronto, Ontario, Canada; April 17-24, 1999: 2PC.005-1-2PC:005-13
  • 78 Farlow M, Gracon S I, Hershey L A et al.. A controlled trial of tacrine in Alzheimer's disease.  JAMA. 1992;  268 2523-2529
  • 79 Knapp M, Knopman D, Solomon P et al.. A 30-week randomized controlled trial of high dose tacrine in patients with Alzheimer's disease.  JAMA. 1994;  271 985-991
  • 80 Rogers S L, Farlow M R, Doody R S, Mohs R, Friedhoff L T. A 24-week double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group.  Neurology. 1998;  50 136-145
  • 81 Rosler M, Anand R, Cicin-Sain A et al.. Efficacy and safety of rivastigmine in patients with Alzheimer's disease: international randomized controlled trial.  BMJ. 1999;  318 633-640
  • 82 Drachman D A, Leavitt J. Human memory and the cholinergic system.  Arch Neurol. 1974;  30 113-121
  • 83 Thal L J, Fuld P A, Masur O M et al.. Oral physostigmine and lecithin improve memory in Alzheimer disease.  Ann Neurol. 1983;  13 491-496
  • 84 Fuld P, Katzman R, Davies P. Intrusions as a sign of Alzheimer dementia: chemical and pathological verification. Ann Neurol 1982 11: 155-159
  • 85 Tanaka Y, Minernatsu K, Hirano T et al.. Effects of COP-choline on dynamic changes in LCBF and cognitive function in demented subjects-An H2150-PET study [In Japanese with English abstract].  Clin Neuro1. 1994;  34 877-881
  • 86 Tanaka Y, Miyazaki M, Albert M L. Effect of increased cholinergic activity on naming in aphasia.  Lancet. 1997;  350 116-117
  • 87 Willmes K, Huber W, Poeck K et al.. Die Wirkung von Piracetam bei der logopadischen Intensivthepapie von chronish aphasischen Patienten. In: VonHelmchen Sonderd ruck ans Wirlumgen und WirksarnIeit von Nootropika. Berlin; Springer-Verlag 1988: 177-187
  • 88 Aarsland O, Larsen J P, Reinvang I et al.. Effects of cholinergic blockade on language in healthy young women: implications for the cholinergic hypothesis in dementia of the Alzheimer's type.  Brain. 1994;  117 1377-1384
  • 89 Dubois B, Bernard P, Lhermitte F et al.. Cholinergic deficiency and frontal dysfunction in Parkinson's disease.  Ann Neuro1. 1990;  28 117-121
  • 90 Imamura T, Takanashi M, Hattori N et al.. Bromocriptine treatment for perseveration in demented patients.  Alzheimer Dis Assoc Disord. 1998;  12 109-113
  • 91 Buckingham H W, Christman S S. Phonemic carryover perseveration: word blends.  Semin Speech Lang. 2004;  25 XXX
  • 92 Leanderson R, Meyerson B, Persson A. Effect of L-Dopa on speech in Parkinsonism: an EMG study of labial articulatory function.  J Neurol Neurosurg Psychiatry. 1971;  34 679-681
  • 93 Nakano K, Zubick H, Tyler H. Speech defects of parkinsonian patients: effects of levodopa therapy on speech intelligibility.  Neurology. 1973;  23 865-870
  • 94 Quaglieri C, Celesia G. Effect of thalamotomy and levodopa therapy on the speech of Parkinson patients.  Eur J Neurol. 1977;  15 34-39
  • 95 Wolfe V, Garvin J, Bacon M, Waldrop W. Speech changes in Parkinson's disease during treatment with L-dopa.  J Commun Disord. 1975;  8 271-279
  • 96 Critchley E. Speech disorders of Parkinsonism: a review.  J Neurol Neurosurg Psychiatry. 1981;  44 751-758
  • 97 Cahill L, Murdoch B, Theodoros D et al.. Effect of oral levodopa treatment on articulatory function in Parkinson's disease.  Motor Control. 1998;  2 161-172
  • 98 Goberman A M, Coelho C. Acoustic analysis of Parkinsonian speech. I: Speech characteristics and L-Dopa therapy.  NeuroRehabilitation. 2002;  17 237-246
  • 99 Poluha P, Teulings H, Brookshire R. Handwriting and speech changes across the levadopa cycle in Parkinson's disease.  Acta Psychol (Amst). 1998;  100 71-84
  • 100 Louis E D, Winfield L, Fahn S, Ford B. Speech dysfluency exacerbated by levodopa in Parkinson's disease.  Mov Disord. 1991;  16 562-565
  • 101 Benson D F. Presentation 10. In: Benton AL Behavioral Changes in Cerebrovascular Disease. New York; Harper and Row 1970: 77
  • 102 McNeil M R, Small S L, Masterson R J, Fossett T. Behavioral and pharmacological treatment of lexical-semantic deficits in case of primary progressive aphasia.  Am J Speech Lang Pathol. 1995;  4 76-87
  • 103 Walker-Batson D. Pharmacotherapy in the treatment of aphasia. In: Goldstein LB Restorative Neurology: Advances in Pharmacotherapy for Recovery After Stroke. Armonk, NY; Futura Publishing 1998: 257-270
  • 104 Albert M L, Bachman D, Morgan A, Helm-Estabrooks N. Pharmacotherapy for aphasia.  Neurology. 1988;  38 877-879
  • 105 Gupta S R, Mlcoch A G. Bromocriptine treatment of nonfluent aphasia.  Arch Phys Med Rehabil. 1992;  73 373-376
  • 106 Sabe L, Salvarezza F, Garcia Cuerva A, Leiguarda R, Starkstein S. A randomized double-blind placebo controlled study of bromocriptine in non-fluent aphasia.  Neurology. 1995;  45 2272-2274
  • 107 Bragoni M, Altieri M, Di Piero V et al.. Bromocriptine and speech therapy in non-fluent chronic aphasia after stroke.  Neurol Sci. 2000;  21 19-22
  • 108 Gupta S R, Mlcoch A J, Scolaro C, Moritz T. Bromocriptine treatment of nonfluent aphasia.  Neurology. 1995;  45 2170-2173

Patrick McNamaraPh.D. 

Department of Neurology (127), VA New England Healthcare System

150 S. Huntington Avenue

Boston, MA 02130

Email: mcnamar@bu.edu

    >