Handchir Mikrochir Plast Chir 2004; 36(1): 1-7
DOI: 10.1055/s-2004-820870
Übersichtsartikel

Georg Thieme Verlag Stuttgart · New York

Alternatives to Autologous Nerve Grafts

Alternativen zu autologen NerventransplantatenG. Lundborg1
  • 1Department of Hand Surgery, Malmö University Hospital, Malmö, Sweden
Further Information

Publication History

Eingang des Manuskriptes: July 10, 2003

Angenommen: October 31, 2003

Publication Date:
13 April 2004 (online)

Zusammenfassung

Der Einsatz autologer Nerventransplantate zur Überbrückung von Nervendefekten verlangt die Verwendung von gesunden Nerven. Die Entwicklung von Alternativen zum autologen Nerventransplantat ist daher gut begründet. Derartige „künstliche Nerven“ können in einem Tissue-Engineering-Verfahren auf der Basis des Einsatzes von Stroma/Matrix/Träger einerseits und Zellen und neurotrope Substanzen andererseits hergestellt werden. Dabei kann der Träger aus synthetischem oder aus biologischem Material bestehen und resorbierbar oder nicht-resorbierbar sein. Dabei ist ein Zusammenwirken mit vorkultivierten oder frisch gewonnenen Schwannschen Zellen erforderlich. Die neurotropen Substanzen, die die axonale Aussprossung stimulieren, können dabei entweder in den Träger inkorporiert oder mit den Stromazellen eingebracht werden. Bisher wurden über Tissue-Engineering hergestellte Nervenleitbahnen hauptsächlich für experimentelle Zwecke in Tierexperimenten eingesetzt. Es wächst jedoch gegenwärtig die Erfahrung für den klinischen Einsatz von Alternativen zum Nerventransplantat, bei denen es sich hauptsächlich um Röhren aus Silikon oder Polyglykolsäure (PGA), Venen, Kollagen und Basalschicht von Muskeln handelt.

Abstract

The use of autologous nerve grafts for bridging defects in nerve continuity requires the sacrifice of healthy nerves. Development of alternatives to autologous nerve grafts is therefore well motivated. Such “bioartificial nerve grafts” can be tissue-engineered on the basis of the use of a stroma/matrix/scaffold acting in concert with cells and neurotrophic factors. Such a scaffold can be of synthetic or biological nature and can be resorbable or non-resorbable. It should act together with Schwann cells which can be pre-cultured or acutely dissociated. Neurotrophic factors, stimulating axonal growth, can be incorporated in the scaffold and can also be supplied by cells which are seeded into the stroma. So far, tissue-engineered nerve conduits have been used mainly for experimental purposes in experimental animals. However, an increasing amount of experience from the clinical use of alternatives to nerve grafts now exists, mainly tubes made of silicone or poly-glycolic acid (PGA), veins, collagen and muscle basal laminae.

References

  • 1 Aebischer P, Guenard V, Valentini R F. The morphology of regenerating peripheral nerves is modulated by the surface microgeometry of polymeric guidance channels.  Brain Res. 1990;  531 211-218
  • 2 Ahmed Z, Brown R A, Ljungberg C, Wiberg M, Terenghi G. Nerve growth factor enhances peripheral nerve regeneration in non-human primates.  Scand J Plast Reconstr Surg Hand Surg. 1999;  33 393-401
  • 3 Ansselin A D, Fink T, Davey D F. Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells.  Neuropathol Appl Neurobiol. 1997;  23 387-398
  • 4 Arai T, Kanje M, Lundborg G, Sondell M, Liu X L, Dahlin L B. Axonal outgrowth in muscle grafts made acellular by chemical extraction.  Restor Neurol Neurosci. 2000;  17 165-174
  • 5 Archibald S J, Shefner J, Krarup C, Madison R D. Monkey median nerve repaired by nerve graft or collagen nerve guide tube.  J Neurosci. 1995;  15 4109-4123
  • 6 Bailey S B, Eichler M E, Villadiego A, Rich K M. The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers.  J Neurocytol. 1993;  22 176-184
  • 7 Baron-Van Evercooren A, Kleinman H K, Ohno S, Marangos P, Schwarts J P, Dubois-Dalcq M E. Nerve growth factor, laminin and fibronectin promote neuritic growth in human fetal sensory ganglia cultures.  J Neurosci Res. 1982;  8 179-194
  • 8 Battiston B, Tos P, Cushway T R, Geuna S. Nerve repair by means of vein filled with muscle grafts I. Clinical results.  Microsurgery. 2000;  20 32-36
  • 9 Battiston B, Tos P, Geuna S, Giacobini-Robecchi M G, Guglielmone R. Nerve repair by means of vein filled with muscle grafts. II. Morphological analysis of regeneration.  Microsurgery. 2000;  20 37-41
  • 10 Bergman S, Widerberg A, Danielsen N, Lundborg G, Dahlin L B. Nerve regeneration in nerve grafts conditioned by vibration exposure.  Restor Neurol Neurosci. 1995;  7 165-169
  • 11 Brandt J, Dahlin L B, Kanje M, Lundborg G. Spatiotemporal progress of nerve regeneration in a tendon autograft used for bridging a peripheral nerve defect.  Exp Neurol. 1999;  160 386-393
  • 12 Brandt J, Dahlin L B, Kanje M, Lundborg G. Functional recovery in a tendon autograft used to bridge a peripheral nerve defect.  Scand J Plast Reconstr Surg Hand Surg. 2002;  36 2-8
  • 13 Brandt J, Dahlin L B, Lundborg G. Autologous tendons used as grafts for bridging peripheral nerve defects.  J Hand Surg [Br]. 1999;  24 284-290
  • 14 Brandt J, Nishiura Y, Kanje M, Lundborg G, Dahlin L B. A Schwann cell seeded tendon autograft used for peripheral nerve repair. VIIth FESSH Congress Amsterdam. 2002
  • 15 Buti M, Verdu E, Labrador R O, Vilches J J, Fores J, Navarro X. Influence of physical parameters of nerve chambers on peripheral nerve regeneration and reinnervation.  Exp Neurol. 1996;  137 26-33
  • 16 Calder J S, Green C J. Nerve-muscle sandwich grafts: the importance of Schwann cells in peripheral nerve regeneration through muscle basal lamina conduits.  J Hand Surg [Br]. 1995;  20 423-428
  • 17 Chiu D T. Autogenous venous nerve conduits. A review.  Hand Clin. 1999;  15 667-671
  • 18 Chiu D T, Lovelace R E, Yu L T, Wolff M, Stengel S, Middleton L, Janecka I P, Krizek T J. Comparative electrophysiologic evaluation of nerve grafts and autogenous vein grafts as nerve conduits: an experimental study.  J Reconstr Microsurg. 1988;  4 303-309 311-312
  • 19 Chiu D T, Strauch B. A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less.  Plast Reconstr Surg. 1990;  86 928-934
  • 20 Chiu D TW, Janecka I, Krizek T J, Wolff M, Lovelace R E. Autogenous vein graft as a conduit for nerve regeneration.  Surgery. 1982;  91 226-233
  • 21 Crawley W A, Dellon A L. Inferior alveolar nerve reconstruction with a polyglycolic acid bioabsorbable nerve conduit.  Plast Reconstr Surg. 1992;  90 300-302
  • 22 Dahlin L, Lundborg G. Bridging defects in nerve continuity: influence of variations in synthetic fiber composition.  J Mater Sci Mat Med. 1999;  10 549-553
  • 23 Dahlin L B, Lundborg G. Experimental nerve grafting - towards future solutions of a clinical problem.  J Hand Surg [Br]. 1998;  23 165-173
  • 24 Dahlin L B, Zhao Q, Bjursten L M. Nerve regeneration in silicone tubes: distribution of macrophages and interleukin-1β in the formed fibrin matrix.  Restor Neurol Neurosci. 1995;  8 199-203
  • 25 Danielsen N, Dahlin L B, Thomsen P. Inflammatory cells and mediators in the silicone chamber model for nerve regeneration.  Biomaterials. 1993;  14 1180-1185
  • 26 Danielsen N, Kerns J M, Holmquist B, Zhao Q, Lundborg G, Kanje M. Pre-degenerated nerve grafts enhance regeneration by shortening the initial delay period.  Brain Res. 1994;  666 250-254
  • 27 Danielsen N, Pettman B, Vahlsing H L, Manthorpe M, Varon S. Fibroblast growth factor effects on peripheral nerve regeneration in a silicone chamber model.  J Neurosci Res. 1988;  20 320-330
  • 28 Danielsen N, Varon S. Characterization of neurotrophic activity in the silicone chamber model for nerve regeneration.  J Reconstr Microsurg. 1995;  11 231-235
  • 29 Danielson P, Dahlin L B, Povlsen B. Increased axonal outgrowth following a crush injury to the rat sciatic nerve by encapsulating the zone of regeneration in a silicone tube.  Exp Neurol. 1996;  139 238-243
  • 30 Dellon A L, Mackinnon S E. An alternative to the classical nerve graft for the management of the short nerve gap.  Plast Reconstr Surg. 1988;  82 849-856
  • 31 Fansa H, Keilhoff G, Forster G, Seidel B, Wolf G, Schneider W. Acellular muscle with Schwann-cell implantation: an alternative biologic nerve conduit.  J Reconstr Microsurg. 1999;  15 531-537
  • 32 Fawcett J W, Keynes R J. Muscle basal lamina: a new graft material for peripheral nerve repair.  J Neurosurg. 1986;  65 354-363
  • 33 Feneley M R, Fawcett J W, Keynes R J. The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts.  Exp Neurol. 1991;  114 275-285
  • 34 Foidart-Dessalle M, Dubuisson A, Lejeune A, Severyns A, Manassis Y, Delree P, Crielaard J M, Bassleer R, Lejeune G. Sciatic nerve regeneration through venous or nervous grafts in the rat.  Exp Neurol. 1997;  148 236-246
  • 35 Fornaro M, Tos P, Geuna S, Giacobini-Robecchi M G, Battiston B. Confocal imaging of Schwann-cell migration along muscle-vein combined grafts used to bridge nerve defects in the rat.  Microsurgery. 2001;  21 153-155
  • 36 Geuna S, Tos P, Battiston B, Guglielmone R, Giacobini-Robecchi M G. Morphological analysis of peripheral nerve regenerated by means of vein grafts filled with fresh skeletal muscle.  Anat Embryol (Berl). 2000;  201 475-482
  • 37 Geuna S, Tos P, Battiston B, Guglielmone R, Giacobini-Robecchi M G. A stereological study of long-term regeneration of rat severed sciatic nerve repaired by means of muscle-vein-combined grafts.  Ital J Anat Embryol. 2000;  105 65-73
  • 38 Glasby M A. Interposed muscle grafts in nerve repair in the hand: an experimental basis for future clinical use.  World J Surg. 1991;  15 501-510
  • 39 Glasby M A, Carrick M J, Hems T EJ. Freeze-thawed skeletal muscle autografts used for brachial plexus repair in the non-human primate.  J Hand Surg [Br]. 1992;  17 526-535
  • 40 Glasby M A, Gschmeissner S E, Huang C-H, De Souza B A. Degenerated muscle grafts used for peripheral nerve repair in primates.  J Hand Surg [Br]. 1986;  11 347-351
  • 41 Glasby M A, Gschmeissner S G, Hitchcock R JI, Huang C L-H. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane.  J Neurocytol. 1986;  15 497-510
  • 42 Gomez N, Cuadras J, Buti M, Navarro X. Histologic assessment of sciatic nerve regeneration following resection and graft or tube repair in the mouse.  Rest Neurol Neurosci. 1996;  10 187-196
  • 43 Gschmeissner S E, Gattuso J M, Glasby M A, Huang C L-H. Functional reinnervation of muscles after nerve repair with muscle grafts. Demonstration using a new combined stain.  Neuro-Orthopedics. 1988;  5 1-9
  • 44 Guénard V, Kleitman N, Morrissey T K, Bunge R P, Aebischer P. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration.  J Neurosci. 1992;  12 3310-3320
  • 45 Gulati A K. Peripheral nerve regeneration through short- and long-term degenerated nerve transplants.  Brain Res. 1996;  742 265-270
  • 46 Haapaniemi T, Nylander G, Kanje M, Dahlin L B. Hyperbaric oxygen treatment enhances regeneration of the rat sciatic nerve.  Exp Neurol. 1998;  149 433-438
  • 47 Hazari A, Johansson-Ruden G, Junemo-Bostrom K, Ljungberg C, Terenghi G, Green C, Wiberg M. A new resorbable wrap-around implant as an alternative nerve repair technique.  J Hand Surg [Br]. 1999;  24 291-295
  • 48 Hazari A, Wiberg M, Johansson-Ruden G, Green C, Terenghi G. A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair.  Br J Plast Surg. 1999;  52 653-657
  • 49 Hems T EJ, Glasby M A. The limit of graft length in the experimental use of muscle grafts for nerve repair.  J Hand Surg [Br]. 1993;  18 165-170
  • 50 Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S. Schwann cell basal lamina and nerve regeneration.  Brain Res. 1983;  288 61-75
  • 51 Jenq C B, Coggeshall R E. Nerve regeneration through holey silicone tubes.  Brain Res. 1985;  361 233-241
  • 52 Kanje M, Stenberg L, Ahlin A, Dahlin L B. Activation of non-neuronal cells in the rat sciatic nerve in response to inflammation caused by implanted silicone tubes.  Rest Neurol Neurosci. 1995;  8 181-187
  • 53 Kauppila T, Jyväsjärvi E, Huopaniemi T, Hujanen E, Liesi P. A laminin graft replaces neurorrhaphy in the restorative surgery of the rat sciatic nerve.  Exp Neurol. 1993;  123 181-191
  • 54 Keynes R J, Hopkins W G, Huang C-H. Regeneration of mouse peripheral nerves in degenerating skeletal muscle: guidance by residual muscle fibre basement membranes.  Brain Res. 1984;  295 275-281
  • 55 Kim D H, Connolly S E, Kline D G, Voorhies R M, Smith A, Powell M, Yoes T, Daniloff J K. Labeled Schwann cell transplants versus sural nerve grafts in nerve repair.  J Neurosurg. 1994;  80 254-260
  • 56 Kim D H, Connolly S E, Zhao S, Beuerman R W, Voorhies R M, Kline D G. Comparison of macropore, semipermeable and nonpermeable collagen conduits in nerve repair.  J Reconstr Microsurg. 1993;  9 415-420
  • 57 Kljavin I J, Madison R D. Peripheral nerve regeneration within tubular prostheses: effects of laminin and collagen matrices on cellular ingrowth.  Cells & Materials. 1991;  1 17-28
  • 58 Krarup C, Archibald S J, Madison R D. Factors that influence peripheral nerve regeneration: an electrophysiological study of the monkey median nerve.  Ann Neurol. 2002;  51 69-81
  • 59 Labrador R O, Buti M, Navarro X. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair.  Exp Neurol. 1998;  149 243-252
  • 60 Levi A D, Sonntag V K, Dickman C, Mather J, Li R H, Cordoba S C, Bichard B, Berens M. The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates.  Exp Neurol. 1997;  143 25-36
  • 61 Li S T, Archibald S J, Krarup C, Madison R D. Peripheral nerve repair with collagen conduits.  Clin Mater. 1992;  9 195-200
  • 62 Liu X L, Arai T, Sondell M, Lundborg G, Kanje M, Dahlin L B. Use of chemically extracted muscle grafts to repair extended nerve defects in rats.  Scand J Plast Reconstr Surg Hand Surg. 2001;  35 337-345
  • 63 Ljungberg C, Novikov L, Kellerth J, Ebendal T, Wiberg M. The neurotrophins NGF and NT-3 reduce sensory neuronal loss in adult rat after peripheral nerve lesion.  Neurosc Letter. 1999;  262 29-32
  • 64 Longo F M, Hayman E G, Davis G E, Ruoslahti E, Engvall E, Manthorpe M, Varon S. Neurite-promoting factors and extracellular matrix components accumulating in vivo within nerve regeneration chambers.  Brain Res. 1984;  309 105-117
  • 65 Longo F M, Manthorpe M, Skaper S D, Lundborg G, Varon S. Neuronotrophic activities accumulate in vivo within silicone nerve regeneration chambers.  Brain Res. 1983;  261 109-117
  • 66 Longo F M, Skaper S D, Manthorpe M, Williams L R, Lundborg G, Varon S. Temporal changes of neuronotrophic activities accumulating in vivo within nerve regeneration chambers.  Exp Neurol. 1983;  81 756-769
  • 67 Lundborg G. Nerve Injury and Repair. Edinburgh; Churchill Livingstone 1988
  • 68 Lundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance.  J Hand Surg [Am]. 2000;  25 391-414
  • 69 Lundborg G, Dahlin L, Kanje M, Terada N, Dohi D. A new type of bioartificial nerve graft for bridging of extended defects in nerve continuity.  J Hand Surg [Br]. 1997;  22 299-303
  • 70 Lundborg G, Dahlin L B, Danielsen N. Ulnar nerve repair by the silicone chamber technique: Case report.  Scand J Plast Reconstr Hand Surg. 1991;  25 79-82
  • 71 Lundborg G, Dahlin L B, Danielsen N, Gelberman R H, Longo F M, Powell H C, Varon S. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components.  Exp Neurol. 1982;  76 361-375
  • 72 Lundborg G, Hansson H A. Regeneration of peripheral nerve through a preformed tissue space. Preliminary observations on the reorganization of regenerating nerve fibres and perineurium.  Brain Res. 1979;  178 573-576
  • 73 Lundborg G, Hansson H A. Nerve regeneration through preformed pseudosynovial tubes: A preliminary report of a new experimental model for studying the regeneration and reorganization capacity of peripheral nerve tissue.  J Hand Surg [Am]. 1980;  5 35-38
  • 74 Lundborg G, Kanje M. Bioartificial nerve grafts - a prototype.  Scand J Plast Reconstr Hand Surg. 1996;  30 105-110
  • 75 Lundborg G, Longo F M, Varon S. Nerve regeneration model and trophic factors in vivo.  Brain Res. 1982;  232 157-161
  • 76 Lundborg G, Rosén B, Abrahamsson S O, Dahlin L B, Danielsen N. Tubular repair of the median nerve in the human forearm. Preliminary findings.  J Hand Surg [Br]. 1994;  19 273-276
  • 77 Lundborg G, Rosén B, Dahlin L, Danielsen N, Holmberg J. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study.  J Hand Surg [Am]. 1997;  22 99-106
  • 78 Lundborg G, Rosén B, Dahlin L, Holmberg J, Rosén I. Tubular repair of the median and ulnar nerve in the human forearm: a five-year follow-up.  J Hand Surg [Br]. (in press); 
  • 79 Mackinnon S E, Dellon A L. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube.  Plast Reconstr Surg. 1990;  85 419-424
  • 80 Mackinnon S E, Dellon A L. A study of nerve regeneration across synthetic (Maxon) and biologic (collagen) nerve conduits for nerve gaps up to 5 cm in the primate.  J Reconstr Microsurg. 1990;  6 117-121
  • 81 Madison R D, Archiblad S J. Potential value of synthetic tubes for nerve repair. Wilkins RH, Rengachary SS Neurosurgery. 2nd ed. New York; McGraw-Hill 1996
  • 82 Madison R D, Da Silva C, Dikkes P, Sidman R L, Chiu T H. Peripheral nerve regeneration with entubulation repair: Comparison of biodegradable nerve guides versus polyethylene tubes and the effects of a laminin-containing gel.  Exp Neurol. 1987;  95 378-390
  • 83 Madison R D, Da Silva C F, Dikkes P, Chiu T H, Sidman R L. Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and a laminin-containing gel.  Exp Neurol. 1985;  88 767-772
  • 84 Madison R D, DaSilva C F, Dikkes P. Entubulation repair with protein additives increases the maximum nerve gap distance successfully bridged with tubular prostheses.  Brain Res. 1988;  447 325-334
  • 85 Millesi H. Techniques for nerve grafting.  Hand Clinics. 2000;  16 73-91
  • 86 Millesi H, Meissl G, Berger A. The interfascicular nerve grafting of the median and ulnar nerves.  J Bone Joint Surg [Am]. 1972;  54 727-750
  • 87 Millesi H, Meissl G, Berger A. Further experience with interfascicular grafting of the median, ulnar and radial nerves.  J Bone Joint Surg [Am]. 1976;  58 209-217
  • 88 Molander H, Engkvist O, Hägglund J, Olsson Y, Torebjörk E. Nerve repair using a polyglactin tube and nerve graft: An experimental study in the rabbit.  Biomaterials. 1983;  4 276-280
  • 89 Molander H, Olsson Y, Engkvist O, Bowald S, Eriksson I. Regeneration of peripheral nerve through a polyglactin tube.  Muscle Nerve. 1982;  5 54-57
  • 90 Mosahebi A, Fuller P, Wiberg M, Terenghi G. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration.  Exp Neurol. 2002;  173 213-223
  • 91 Müller H W, Williams L R, Varon S. Nerve regeneration chamber: evaluation of exogenous agents applied by multiple injections.  Brain Res. 1987;  413 320-326
  • 92 Navarro X, Rodriguez F J, Labrador R O, Buti M, Ceballos D, Gomez N, Cuadras J, Perego G. Peripheral nerve regeneration through bioresorbable and durable nerve guides.  J Periph Nerv Syst. 1996;  1 53-64
  • 93 Navarro X, Udina E, Ceballos D, Gold B G. Effects of FK506 on nerve regeneration and reinnervation after graft or tube repair of long nerve gaps.  Muscle Nerve. 2001;  24 905-915
  • 94 Navarro X, Verdu E, Buti M. Comparison of regenerative and reinnervating capabilities of different functional types of nerve fibers.  Exp Neurol. 1994;  129 217-224
  • 95 Nishiura Y, Kanje M, Brandt J, Lundborg G, Nilsson A, Dahlin L B. Addition of Schwann cells to teased tendon grafts and acellular muscle grafts improves nerve regeneration. Society for Neuroscience San Diego, Nov 10 - 15. 2001
  • 96 Nishiura Y, Kanje M, Lundborg G, Ochiai N, Dahlin L B. Transplantation of cultured Schwann cells to teased tendon grafts and freeze thawed muscle grafts improves nerve regeneration. 8th IFSSH Congress Istanbul, Turkey, June 10 - 14. 2001
  • 97 Podhajsky R J, Myers R R. The vascular response to nerve transection: neovascularization in the silicone nerve regeneration chamber.  Brain Res. 1994;  662 88-94
  • 98 Rich K, Alexander T, Pryor J, Hollowell J. Nerve growth factor enhances regeneration through silicon chambers.  Exp Neurol. 1989;  105 162-170
  • 99 Rich K M, Luszczynski J R, Osborne P A, Johnson Jr E M. Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury.  J Neurocytol. 1987;  16 261-268
  • 100 Rodrigues F J, Gomez N, Perego G, Navarro. Highly permeable polyactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps.  Biomaterials. 1999;  20 1489-1500
  • 101 Rodriguez F J, Verdu E, Ceballos D, Navarro X. Nerve guides seeded with autologous Schwann cells improve nerve regeneration.  Exp Neurol. 2000;  161 571-584
  • 102 Rosen J M, Padilla J A, Nguyen K D, Padilla M A, Sabelman E E, Pham H N. Artificial nerve graft using collagen as an extracellular matrix for nerve repair compared with sutured autograft in a rat model.  Ann Plast Surg. 1990;  25 375-387
  • 103 Scherman P, Kanje M, Lundborg G, Dahlin L B. Continuous longitudinal sutures - a new and simple approach to repair nerve defects. FESSH Seventh Congress Barcelona, Spain.  J Hand Surg [Br]. 2000;  25 44
  • 104 Scherman P, Lundborg G, Kanje M, Dahlin L B. Sutures alone are sufficient to support regeneration across a gap in the continuity of the sciatic nerve in rats.  Scand J Plast Reconstr Surg Hand Surg [Br]. 2000;  34 1-8
  • 105 Scherman P, Lundborg G, Kanje M, Dahlin L B. Neural regeneration along longitudinal polyglactin sutures across short and extended defects in the rat sciatic nerve.  J Neurosurg. 2001;  95 316-323
  • 106 Scherman P, Lundborg G, Kanje M, Dahlin L B. Local effects of triiodothyroninen treated polyglactin sutures enhanced myelination in regeneration across sciatic nerve defects in the rat. VIIth FESSH Congress Amsterdam. 2002
  • 107 Seckel B R, Jones D, Hekimian K J, Wang K K, Chakalis D P, Costas P D. Hyaluronic acid through a new injectable nerve guide delivery system enhances peripheral nerve regeneration in the rat.  J Neurosci Res. 1995;  40 318-324
  • 108 Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction.  Brain Res. 1998;  795 44-54
  • 109 Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system.  J Neurosci. 1999;  19 5731-5740
  • 110 Sterne G D, Brown R A, Green C J, Terenghi G. Neurotrophin-3 delivered locally via fibronectin mats enhances peripheral nerve regeneration.  Eur J Neurosci. 1997;  9 1388-1396
  • 111 Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y. Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel.  Neurosci Letters. 1999;  259 75-78
  • 112 Terada N, Bjursten L M, Dohi D, Lundborg G. Bioartificial nerve grafts based on absorbable guiding filament structures - early observations.  Scand J Plast Reconstr Hand Surg. 1997;  31 1-6
  • 113 Terada N, Bjursten L M, Papaloizos M, Lundborg G. Resorbable filament structures as a scaffold for matrix formation and axonal growth in bioartificial nerve grafts - long term observations.  Rest Neurol Neurosci. 1997;  11 65-69
  • 114 Terada N, Lundborg G, Bjursten L M, Dohi D. The role of macrophages in bioartificial nerve grafts based on resorbable guiding filament structures.  J Med Mat. 1997;  8 391-394
  • 115 Tong X, Hirai K I, Shimada H, Mizutani Y, Izumi T, Toda N, Yu P. Sciatic nerve regeneration navigated by laminin-fibronectin double coated biodegradable collagen grafts in rats.  Brain Res. 1994;  663 155-162
  • 116 Tos P, Battiston B, Geuna S, Giacobini-Robecchi M G, Hill M A, Lanzetta M, Owen E R. Tissue specificity in rat peripheral nerve regeneration through combined skeletal muscle and vein conduit grafts.  Microsurgery. 2000;  20 65-71
  • 117 Valentini R F, Aebischer P, Winn S R, Galletti P M. Collagen- and laminin-containing gels impede peripheral nerve regeneration through semipermeable nerve guidance channels.  Exp Neurol. 1987;  98 350-356
  • 118 Valero-Cabre A, Tsironis K, Skouras E, Perego G, Navarro X, Neiss W F. Superior muscle reinnervation after autologous nerve graft or poly-L-lactide-epsilon-caprolactone (PLC) tube implantation in comparison to silicone tube repair.  J Neurosci Res. 2001;  63 214-223
  • 119 Wang G Y, Hirai K, Shimada H, Taji S, Zhong S Z. Behavior of axons, Schwann cells and perineurial cells in nerve regeneration within transplanted nerve grafts: effects of anti-laminin and anti-fibronectin antisera.  Brain Res. 1992;  583 216-226
  • 120 Weber A, Breidenback W C, Brown R E, Jabaley M E, Mass D P. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans.  Plast Reconstr Surg. 2000;  106 1036-1045
  • 121 Whitworth I H, Brown R A, Doré C, Green C J, Terenghi G. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair.  J Hand Surg [Br]. 1995;  20 429-436
  • 122 Whitworth I H, Brown R A, Doré C J, Anand P, Green C J, Terenghi G. Nerve growth factors enhance nerve regeneration through fibronectin grafts.  J Hand Surg [Br]. 1996;  21 514-522
  • 123 Whitworth I H, Dore C J, Green C J, Terenghi G. Increased axonal regeneration over long nerve gaps using autologous nerve-muscle sandwich grafts.  Microsurgery. 1995;  16 772-778
  • 124 Whitworth I H, Terenghi G, Green C J, Brown R A, Stevens E, Tomlinson D R. Targeted delivery of nerve growth factor via fibronectin conduits assists nerve regeneration in control and diabetic rats.  Eur J Neurosci. 1995;  7 2220-2225
  • 125 Wiberg M, Ljungberg C, O'Byrne A, Brown R, Whitworth I, Liss A, Terenghi G. Primary sensory neuron survival following targeted administration of nerve growth factor to an injured nerve.  Scand J Plast Reconstr Hand Surg. 1999;  33 387-392
  • 126 Williams L R. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber.  Neurochem Res. 1987;  12 851-860
  • 127 Wu S, Suzuki Y, Tanihara M, Ohnishi K, Endo K, Nishimura Y. Repair of facial nerve with alginate sponge without suturing: an experimental study in cats.  Scand J Plast Reconstr Surg Hand Surg. 2002;  36 135-140
  • 128 Yoshii S, Oka M, Ikeda N, Akagi M, Matsusue Y, Nakamura T. Bridging a peripheral nerve defect using collagen filaments.  J Hand Surg [Am]. 2001;  26 52-59
  • 129 Yoshii S, Oka M, Shima M, Taniguchi A, Akagi M. 30 mm regeneration of rat sciatic nerve along collagen filaments.  Brain Res. 2002;  949 202-208
  • 130 Young R C, Wiberg M, Terenghi G. Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves.  Br J Plast Surg. 2002;  55 235-240
  • 131 Zamboni W A, Brown R E, Roth A C, Mathur A, Stephenson L L. Functional evaluation of peripheral nerve repair and the effect of hyperbaric oxygen.  J Reconstr Microsurg. 1995;  11 27-29
  • 132 Zeng L, Worseg A, Albrecht G, Öhlinger W, Redl H, Grisold W, Zatloukal K, Schlag G. Bridging of peripheral nerve defects with exogenous laminin-fibrin matrix in silicone tubes in a rat model.  Rest Neurol Neurosci. 1995;  8 107-111
  • 133 Zhao Q, Dahlin L B, Kanje M, Lundborg G. Repair of the transected rat sciatic nerve: Matrix formation within silicone tubes.  Restor Neurol Neurosci. 1993;  5 197-204

Prof. Dr. med. Göran Lundborg

Department of Hand Surgery
Malmö University Hospital

20502 Malmö

Sweden

Email: goran.lundborg@hand.mas.lu.se

    >