Zusammenfassung
Hintergrund: Die Modifikation adenoviraler Vektoren mit einer Arg-Gly-Asp-(RGD-)Sequenz kann Resistenzentwicklungen
umgehen und zu einer erhöhten Transfektion der Zelle führen. Wir konstruierten daher
einen adenoviralen Vektor mit einer RGD-Sequenz, der das TRAIL -Gen, gesteuert von einem Human-Telomerase-Reverse-Transcriptase-(hTERT-)Promoter,
exprimiert, und untersuchten seine zelltötende Aktivität in vitro und in vivo , wozu ein orthotopes Pankreastumormodel in Nacktmäusen etabliert wurde. Material und Methoden: Die Apoptoseinduktion des Vektors Ad/TRAIL-F/RGD wurde in humanen Zelllinien von
hepatozellulären Karzinomen (Hep G2, Hep 3b), Pankreaskarzinomen (Panc-1, Capan-1)
und Kolonkarzinomen (LOVO, SW 620) untersucht. Die Hemmung der Zellproliferation wurde mit einem XTT-Assay bestimmt, die GFP-Expression
und Apoptoseinduktion mittels Durchflusszytometrie sowie TRAIL- und Caspase-8-Expression
durch Western Blot-Analysen. In-vivo -Untersuchungen wurden in einem orthotopen Pankreastumormodel an Nu/nu-Nacktmäusen
durchgeführt. Ergebnisse: Die Behandlung mit Ad/TRAIL-F/RGD und Ad/gTRAIL zeigte eine signifikant reduzierte
Zellproliferation und deutliche Apoptoseinduktion im Vergleich zu den Kontrollgruppen
in allen getesteten Zelllinien. Zusätzlich zeigten die mit Ad/TRAIL-F/RGD behandelten
Tiere ein signifikant geringeres Tumorwachstum (p < 0,05) als die mit PBS oder einem
Kontrollvektor behandelten Tiere. Schlussfolgerung: Unsere Ergebnisse zeigen bei der Verwendung des adenoviralen Vektors Ad/TRAIL-F/RGD
in vitro eine signifikante Proliferationshemmung und deutliche Apoptoseinduktion in humanen
Tumorzelllinien sowie eine signifikante Tumorwachstumshemmung in orthotop implantierten
Pankreastumoren im Pankreasschwanz. Der Einsatz des adenoviralen Vektors Ad/TRAIL-F/RGD
bei der Behandlung maligner Tumoren könnte in Zukunft eine Therapieoption darstellen.
Abstract
Background: Resistance can be overcome by modified adenoviral vectors containing an Arg-Gly-Asp
(RGD) sequence. We constructed an adenoviral vector with RGD-modified fibers, expressing
the TRAIL gene from the human telomerase reverse transcriptase (hTERT) promoter (designated
Ad/TRAIL-F/RGD), and evaluated its antitumor activity in vitro and in vivo. Methods: The induction of apoptosis by the new vector Ad/TRAIL-F/RGD was evaluated in human
carcinoma cells derived from hepatocellular carcinoma (Hep G2, Hep 3b), pancreatic
carcinoma (Panc-1, Capan-1), and colon carcinoma (LOVO, SW 620). Cell viability was measured by the XTT assay and GFP expression and apoptosis induction
by fluorescence-activated cell sorting (FACS) and Western blot. In vivo experiments were performed in an orthotopic pancreas tumor model in nu/nu nude mice.
Results: Treatment with Ad/TRAIL-F/RGD and Ad/gTRAIL resulted in significantly reduced cell
viability in comparison to PBS and Ad/CMV-GFP treatment in all examined human carcinoma
cell lines. In addition, mice treated with Ad/TRAIL-F/RGD showed a significantly decreased
tumor growth than both control groups. Conclusions: Our results suggest that Ad/TRAIL-F/RGD may become a potent therapeutic agent for
the treatment of different human solid carcinomas.
Schlüsselwörter
Apoptose - Gentherapie - TRAIL - RGD - Adenovirus - Gentransfer
Key words
Apoptosis - gene therapy - TRAIL - RGD - adenovirus
1
Yeo C J, Cameron J L, Sohn T A. et al .
Six hundred fifty consecutive Pancreaticoduodenectomies in the 1990 s: Pathology,
Complications, and Outcomes.
Ann Surg.
1997;
226
248-257
2
Yeo T P, Hruban R H, Leach S D. et al .
Pancreatic Cancer.
Curr Probl Cancer.
2002;
4
176-275
3
Ghung-Faye G A, Kerr D J, Young L S. et al .
Gene therapy strategies for colon cancer.
Mol Med Today.
2000;
6
82-87
4
Huang X, Lin T, Gu J. et al .
Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed
from the hTERT promoter in breast cancer cells.
Int J Oncol.
2003;
22
1241-1245
5
Zhang L, Gu J, Huang X. et al .
Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic
gene therapy in DLD1 human colon cancer cell line.
Gene Ther.
2002;
9
1262-1270
6
Kagawa S, He C, Gu J. et al .
Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) gene.
Cancer Res.
2001;
61
3330-3338
7
Lin T, Gu J, Zhang L. et al .
Targeted expression of green fluorescent potein/tumor necrosis factor-related apoptosis-inducing
ligand fusion protein from human telomerase reverse transcriptase promoter elicits
antitumor activity without toxic effects on primary human hepatocytes.
Cancer Res.
2002;
62
3620-3625
8
Voelkel-Johnson C, King D L, Norris J S.
Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand
(TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length
TRAIL.
Cancer Gene Ther.
2002;
9
164-172
9
Jacob D, Schumacher G, Bahra M. et al .
Targeted expression of GFP/TRAIL fusion protein from hTERT promoter elicits apoptosis
in human lung cancer cells.
J Cancer Res Clin Oncol.
2004;
130 (Supp 1)
S160
10
Nitsch R, Bechmann I, Deisz R A. et al .
Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing
ligand (TRAIL).
Lancet.
2000;
356 (9232)
827-828
11
Jo M, Kim T H, Seol D W. et al .
Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing
ligand.
Nat Med.
2000;
6
564-567
12
Gu J, Kagawa S, Takakura M. et al .
Tumor-specific transgene expression from the human telomerase reverse transcriptase
promoter enables targeting of the therapeutic effects of the bax gene to cancer.
Cancer Res.
2000;
60
5359-5364
13
Koch P, Guo Z S, Kagawa S. et al .
Augmenting transgene expression from carcinoembryonic antigen (CEA) promoter via a
GAL4 gene regulatory system.
Mol Ther.
2001;
3
278-283
14
Bergelson J M, Krithivas A, Celi L. et al .
The murine CAR homolog is a receptor for coxsackie B virus and adenovirus.
J Virol.
1998;
72
415-419
15
Pearson A S, Koch P E, Atkinson. et al .
Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic
cancer cell lines.
Clin Cancer Res.
1999;
5
4208-4213
16
Jee Y S, Lee S G, Lee J C. et al .
Reduced expression of coxsackievirus and adenovirus receptor (CAR) in tumor tissue
compared to normal epithelium in head and neck squamous cell carcinoma patients.
Anticancer Res.
2002;
22
2629-2634
17
Dehari H, Ito Y, Nakamura T. et al .
Enhanced antitumor effect of RGD fiber-modified adenovirus for gene therapy of oral
cancer.
Cancer Gene Ther.
2003;
10
75-85
18
Wu H, Seki T, Dimitriev et al.
Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus
receptor-independent gene transfer efficiency.
Human Gene Ther.
2002;
13
1647-1653
19
Kanerva A, Wang M, Bauerschmitz G J. et al .
Gene transfer to ovarien cancer versus normal tissues with fiber-modified adenovirus.
Mol Ther.
2002;
5
695-704
20
Nakamura T, Sato K, Hamada H.
Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors.
Human Gene Ther.
2002;
13
613-626
21
Koizumi N, Mizuguchi H, Hosono T. et al .
Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide.
Biochim Biophys Acta.
2001;
1568
13-20
22
Fang B, Ji L, Bouvet M. et al .
Evaluation of GAL4/TATA in vivo. Induction of transgene expression by adenovirally
mediated gene codelivery.
J Biol Chem.
1998;
27
4972-4975
23
Zhu H, Zhang L, Wu S. et al .
Induction of S-phase arrest and p21 overexpression by a small molecule 2[[3-(2,3-dichlorophenoxy)propyl]
amino]ethanol in correlation with activation of ERK.
Oncogene.
2004;
May (online publication)
24
Kim M, Sumerel L A, Belousova N. et al .
The coxsackevirus and adenovirus receptor acts as a tumor suppressor in malignant
glioma.
Br J Cancer.
2003;
88 (9)
1411-1416
25
Lin T, Zhang L, Davis J. et al .
Combination of TRAIL gene therapy and chemotherapy enhances antitumor and antimetastasis
effects in chemosensitive and chemoresistant breast cancer.
Mol Therapy.
2003;
8
441-448
26
Uchida H, Shinoura N, Kitayama J. et al .
5-Fluorouracil efficiently enhanced apoptosis induced by adenovirus-mediated transfer
of caspase-8 in DLD-1 colon cancer cells.
J Gene Medicine.
2003;
5
287-299
27
Sung M W, Yeh H C, Thung S N. et al .
Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from
colorectal adenocarcinoma: results of a phase I clinical trial.
Mol Therapy.
2001;
4
182-191
28
Swisher G S, Roth J A, Komaki R. et al .
Induction of p53-regulated genes and tumor regression in lung cancer patients after
intratumoral delivery od adenoviral p53 (INGN 201) and radiation therapy.
Clin Cancer Res.
2003;
9
93-101
29
Roth J A.
Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer.
Nat Med.
1996;
2
985-991
30
Habib N A, Sarraf C E, Mitry R R. et al .
E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary
liver tumors.
Human Gene Therapy.
2001;
12
219-226
Dr. med. Dietmar Jacob
Klinik für Transplantations-, Viszeral- und Allgemeinchirurgie, Charité Campus-Virchow
Humboldt-Universität zu Berlin
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/30/4 50-55 20 01
Fax: ++ 49/30/4 50-55 29 00
Email: dietmar.jacob@charite.de