Zusammenfassung
Die Anwendung der Magnetresonanztomographie (MRT) beim Schlaganfall hat sich inzwischen
in vielen Zentren durchgesetzt. Diese Methode wird durch die Vielzahl der funktionell-pathophysiologischen
Informationen zu einem attraktiven, aber auch komplexen diagnostischen Instrument.
Eine unbedingte Voraussetzung für eine rationale Diagnostik bleibt die Kenntnis der
pathophysiologischen Korrelate der einzelnen Bestandteile des Untersuchungsprotokolls.
Unter Berücksichtigung der Erfahrungen in der klinischen Anwendung sollen in dieser
Übersicht einige relevante Elemente der Pathophysiologie des Schlaganfalls dargestellt
und die Möglichkeiten des Schlaganfall-MRT bewertet werden. Als weitere Perspektiven
für das Schlaganfall-MRT wird das „blood oxygen level dependent” (BOLD)-Imaging sowie
die Integration der Informationen aus den verschiedenen Sequenzen in Prädiktionskarten
für das Gewebeschicksal diskutiert.
Abstract (noch nicht bearbeitet)
Magnetic resonance imaging (MRI) is increasingly utilized as the primary imaging modality
in major stroke centers. The ability to depict several aspects of individual pathophysiology
makes the use of MRI in stroke both attractive and complex. Profound knowledge of
the pathophysiology of the imaging findings is crucial for a rational diagnostic workup.
The pathophysiology of MRI in stroke will be reviewed considering recent experiences
in clinical application, and the potential of stroke MRI will be assessed. Further
perspectives like application of “blood oxygen level dependent” (BOLD) and the use
of multiparametric prediction maps will be discussed.
Key words
Magnetic resonance imaging - diffusion - perfusion - stroke - thrombolysis
Literatur
- 1
Hacke W, Warach S.
Diffusion-weighted MRI as an evolving standard of care in acute stroke.
Neurology.
2000;
54
1548-1549
- 2
Tatlisumak T.
Is CT or MRI the method of choice for imaging patients with acute stroke? Why should
men divide if fate has united?.
Stroke.
2002;
33
2144-2145
- 3
Heiland S, Sartor K.
Magnetresonanztomographie beim Schlaganfall - Methodische Grundlagen und klinische
Anwendung.
Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr.
1999;
171
3-14
- 4
Kucinski T, Koch C, Eckert B, Becker V, Kromer H, Heesen C, Grzyska U, Freitag H J,
Röther J, Zeumer H.
Collateral circulation is an independent radiological predictor of outcome after thrombolysis
in acute ischaemic stroke.
Neuroradiology.
2003;
45
11-18
- 5
Astrup J, Siesjö B K, Symon L.
Thresholds in cerebral ischemia - the ischemic penumbra.
Stroke.
1981;
12
723-725
- 6
Hakim A M, Evans A C, Berger L, Kuwabara H, Worsley K, Marchal G, Biel C, Pokrupa R,
Diksic M, Meyer E et al.
The effect of nimodipine on the evolution of human cerebral infarction studied by
PET.
J Cereb Blood Flow Metab.
1989;
9
523-534
- 7
Heiss W D, Kracht L W, Thiel A, Grond M, Pawlik G.
Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting
tissue outcome in patients with cerebral ischaemia.
Brain.
2001;
124
20-29
- 8
Fiehler J, Fiebach J B, Gass A, Hoehn M, Kucinski T, Neumann-Haefelin T, Schellinger P D,
Siebler M, Villringer A, Röther J.
Diffusion-weighted imaging in acute stroke - a tool of uncertain value?.
Cerebrovasc Dis.
2002;
14
187-196
- 9
de Crespigny A J, Röther J, Beaulieu C, Moseley M E, Hoehn M.
Rapid monitoring of diffusion, DC potential, and blood oxygenation changes during
global ischemia. Effects of hypoglycemia, hyperglycemia, and TTX.
Stroke.
1999;
30
2212-2222
- 10
Busza A, Allen K, King M, van Bruggen N, Williams S, Gadian D.
Diffusion-Weighted Imaging Studies of Cerebral Ischemia in Gerbils: Potential Relevance
to Energy Failure.
Stroke.
1992;
23
1602-1612
- 11
Fiehler J, Knab R, Reichenbach J, Fitzek C, Weiller C, Röther J.
Apparent Diffusion Coefficient Decreases and Magnetic Resonance Imaging Perfusion
Parameters Are Associated in Ischemic Tissue of Acute Stroke Patients.
J Cereb Blood Flow Metab.
2001;
21
(5)
577-584
- 12
Lin W, Lee J M, Lee Y Z, Vo K D, Pilgram T, Hsu C Y.
Temporal relationship between apparent diffusion coefficient and absolute measurements
of cerebral blood flow in acute stroke patients.
Stroke.
2003;
34
64-70
- 13
Ay H, Buonanno F S, Rordorf G, Schaefer P W, Schwamm L H, Wu O, Gonzalez R G, Yamada K,
Sorensen G A, Koroshetz W J.
Normal diffusion-weighted MRI during stroke-like deficits.
Neurology.
1999;
52
1784-1792
- 14
Warach S, Gaa J, Siewert B, Wielopolski P, Edelman R R.
Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic
resonance imaging.
Ann Neurol.
1995;
37
231-241
- 15
Marks M P, Tong D C, Beaulieu C, Albers G W, de Crespigny A, Moseley M E.
Evaluation of early reperfusion and i. v. tPA therapy using diffusion- and perfusion-weighted
MRI.
Neurology.
1999;
52
1792-1798
- 16
Kidwell C S, Saver J L, Starkman S, Duckwiler G, Jahan R, Vespa P, Villablanca J P,
Liebeskind D S, Gobin Y P, Vinuela F, Alger J R.
Late secondary ischemic injury in patients receiving intraarterial thrombolysis.
Ann Neurol.
2002;
52
698-703
- 17
Kidwell C, Saver J, Mattiello J, Starkman S, Vinuela F, Duckwile, Gobin Y, Jahan R,
Vespa P, Kalafut M, Alger J.
Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion
magnetic resonance imaging.
Ann Neurol.
2000;
47
462-469
- 18
Fiehler J, Foth M, Kucinski T, Knab R, von Bezold M, Weiller C, Zeumer H, Röther J.
Severe ADC decreases do not predict irreversible tissue damage in humans.
Stroke.
2002;
33
79-86
- 19
Villringer A, Rosen B R, Belliveau J W, Ackerman J L, Lauffer R B, Buxton R B, Chao Y,
Wedeen V J, Brady T J.
Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic
susceptibility effects.
Magn Reson Med.
1988;
6
164-174
- 20
Heiland S, Hartmann M, Sartor K.
Perfusions-MRT bei gestörter Blut-Hirn-Schranke: Fehlerquellen und Lösungsansätze.
Röfo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr.
2000;
172
812-816
- 21
Ostergaard L, Smith D F, Vestergaard-Poulsen P, Hansen S B, Gee A D, Gjedde A, Gyldensted C.
Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging
bolus tracking: comparison with positron emission tomography values.
J Cereb Blood Flow Metab.
1998;
18
425-432
- 22
Mukherjee H, Kang C, Videen T, McKinstry R, Powers W, Derdeyn C.
Measurement of Cerebral Blood Flow in Chronic Carotid Occlusive Disease: Comparison
of Dynamic Susceptibility Contrast Perfusion MR Imaging with Positron Emission Tomography.
AJNR Am J Neuroradiol.
2003;
24
862-871
- 23
Parsons M W, Yang Q, Barber P A, Darby D G, Desmond P M, Gerraty R P, Tress B M, Davis S M.
Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral
blood flow most accurately identifies tissue destined to infarct.
Stroke.
2001;
32
1581-1587
- 24
Neumann-Haefelin T, Wittsack H J, Wenserski F, Siebler M, Seitz R J, Modder U, Freund H J.
Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke.
Stroke.
1999;
30
1591-1597
- 25
Grandin C B, Duprez T P, Smith A M, Oppenheim C, Peeters A, Robert A R, Cosnard G.
Which MR-derived perfusion parameters are the best predictors of infarct growth in
hyperacute stroke? Comparative study between relative and quantitative measurements.
Radiology.
2002;
223
361-370
- 26
Fiehler J, von Bezold M, Kucinski T, Knab R, Eckert B, Wittkugel O, Zeumer H, Röther J.
Cerebral Blood Flow Predicts Lesion Growth in Acute Stroke Patients.
Stroke.
2002;
33
2421-2425
- 27
Sorensen A G, Copen W A, Ostergaard L, Buonanno F S, Gonzalez R G, Rordorf G, Rosen B R,
Schwamm L H, Weisskoff R M, Koroshetz W J.
Hyperacute Stroke: Simultaneous Measurement of Relative Cerebral Blood Volume, Relative
Cerebral Blood Flow, and Mean Tissue Transit Time.
Radiology.
1999;
210
519-527
- 28
Simonsen C Z, Rohl L, Vestergaard-Poulsen P, Gyldensted C, Andersen G, Ostergaard L.
Final infarct size after acute stroke: prediction with flow heterogeneity.
Radiology.
2002;
225
269-275
- 29
Schellinger P D, Fiebach J B, Hacke W.
Imaging-based decision making in thrombolytic therapy for ischemic stroke: present
status.
Stroke.
2003;
34
575-583
- 30
Röther J, Schellinger P D, Gass A, Siebler M, Villringer A, Fiebach J B, Fiehler J,
Jansen O, Kucinski T, Schoder V, Szabo K, Junge-Hulsing G J, Hennerici M, Zeumer H,
Sartor K, Weiller C, Hacke W.
Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute
stroke < 6 hours.
Stroke.
2002;
33
2438-2445
- 31
Fiebach J B, Schellinger P D, Jansen O, Meyer M, Wilde P, Bender J, Schramm P, Juttler E,
Oehler J, Hartmann M, Hahnel S, Knauth M, Hacke W, Sartor K.
CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging
results in higher accuracy and lower interrater variability in the diagnosis of hyperacute
ischemic stroke.
Stroke.
2002;
33
2206-2210
- 32
Schellinger P D, Jansen O, Fiebach J B, Hacke W, Sartor K.
A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral
hemorrhage.
Stroke.
1999;
30
765-768
- 33
Nighoghossian N, Hermier M, Adeleine P, Blanc-Lasserre K, Derex L, Honnorat J, Philippeau F,
Dugor J F, Froment J C, Trouillas P.
Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke:
a gradient-echo T2*-weighted brain MRI study.
Stroke.
2002;
33
735-742
- 34
Lin D D, Filippi C G, Steever A B, Zimmerman R D.
Detection of intracranial hemorrhage: comparison between gradient-echo images and
b(0) images obtained from diffusion-weighted echo-planar sequences.
AJNR Am J Neuroradiol.
2001;
22
1275-1281
- 35
NINDS .
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group.
Tissue plasminogen activator for acute ischemic stroke.
N Engl J Med.
1995;
333
1581-1587
- 36
Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F,
Clark W M, Silver F, Rivera F.
Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized
controlled trial. Prolyse in Acute Cerebral Thromboembolism.
Jama.
1999;
282
2003-2011
- 37
Yang J J, Hill M D, Morrish W F, Hudon M E, Barber P A, Demchuk A M, Sevick R J, Frayne R.
Comparison of pre- and postcontrast 3D time-of-flight MR angiography for the evaluation
of distal intracranial branch occlusions in acute ischemic stroke.
AJNR Am J Neuroradiol.
2002;
23
557-567
- 38
Lien L M, Chen W H, Chen J R, Chiu H C, Tsai Y F, Choi W M, Reynolds P S, Tegeler C H.
Comparison of transcranial color-coded sonography and magnetic resonance angiography
in acute ischemic stroke.
J Neuro-imaging.
2001;
11
363-368
- 39
Akopov S, Whitman G T.
Hemodynamic studies in early ischemic stroke: serial transcranial Doppler and magnetic
resonance angiography evaluation.
Stroke.
2002;
33
1274-1279
- 40
Baird A E, Benfield A, Schlaug G, Siewert B, Lovblad K O, Edelman R R, Warach S.
Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted
magnetic resonance imaging.
Ann Neurol.
1997;
41
581-589
- 41
Fiehler J, Knudsen K, Kucinski T, Eckert B, Wittkugel O, Zeumer H, Röther J.
Tissue signatures of infarction and recovery in ischemic stroke patients. Abstract.
Stroke,.
2003;
1
258
- 42 Coutts S B, Simon J E, Tomanek A I, Barber P A, Chan J, Hudon M E, Mitchell J R,
Frayne R, Eliasziw M, Buchan A M, Demchuk A M. Reliability of Assessing Percentage
of Diffusion-Perfusion Mismatch. Stroke, online first 2003
- 43
Girot M, Leclerc X, Gauvrit J Y, Verdelho A, Pruvo J P, Leys D.
Cerebral Magnetic Resonance Imaging within 6 Hours of Stroke Onset: Inter- and Intra-Observer
Reproducibility.
Cerebrovasc Dis.
2003;
16
122-127
- 44
Schlaug G, Benfield A, Baird A, Siewert B, Lovblad K, Parker R, Edelman R, Warach S.
The ischemic penumbra: operationally defined by diffusion and perfusion MRI.
Neurology.
1999;
53
(7)
1528-1537
- 45
Molina C A, Montaner J, Abilleira S, Ibarra B, Romero F, Arenillas J F, Alvarez-Sabin J.
Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute
cardioembolic stroke.
Stroke.
2001;
32
1079-1084
- 46
Warach S.
Use of diffusion and perfusion magnetic resonance imaging as a tool in acute stroke
clinical trials.
Curr Control Trials Cardiovasc Med.
2001;
2
38-44
- 47
Kucinski T, Koch C, Grzyska U, Freitag H J, Kromer H, Zeumer H.
The predictive value of early CT and angiography for fatal hemispheric swelling in
acute stroke.
AJNR Am J Neuroradiol.
1998;
19
839-846
- 48
Thomalla G J, Kucinski T, Schoder V, Fiehler J, Knab R, Zeumer H, Weiller C, Röther J.
Prediction of malignant middle cerebral artery infarction by early perfusion- and
diffusion-weighted magnetic resonance imaging.
Stroke.
2003;
34
1892-1899
- 49
Baron J C, Rougemont D, Soussaline F, Bustany P, Crouzel C, Bousser M G, Comar D.
Local interrelationships of cerebral oxygen consumption and glucose utilization in
normal subjects and in ischemic stroke patients: a positron tomography study.
J Cereb Blood Flow Metab.
1984;
4
140-149
- 50
Kavec M, Grohn O H, Kettunen M I, Silvennoinen M J, Penttonen M, Kauppinen R A.
Use of spin echo T(2) BOLD in assessment of cerebral misery perfusion at 1.5 T.
Magma.
2001;
12
32-39
- 51
Heiss W.
Ischemic Penumbra: Evidence From Functional Imaging in Man.
J Cereb Blood Flow Metab.
2000;
20
1276-1293
- 52
Dijkhuizen R M, Knollema S, van der Worp H B, Ter Horst G J, De Wildt D J, Berkelbach
van der Sprenkel J W, Tulleken K A, Nicolay K.
Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia
in the rat: evidence for region-specific sensitivity and delayed damage.
Stroke.
1998;
29
695-704
- 53
Kettunen M I, Grohn O H, Silvennoinen M J, Penttonen M, Kauppinen R A.
Quantitative assessment of the balance between oxygen delivery and consumption in
the rat brain after transient ischemia with T2-BOLD magnetic resonance imaging.
J Cereb Blood Flow Metab.
2002;
22
262-270
- 54 Lai S, Benson R, Wang J, Jahng G H, Duckrow R, Wolfson L. Improving Detection of
Ischemic Penumbra by Quantitative BOLD Imaging. Proceedings of the ISMRM, 11th Scientific
Meeting and Exhibition. USA 2002: 262
- 55
Lee J M, Vo K D, An H, Celik A, Lee Y, Hsu C Y, Lin W.
Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke
patients.
Ann Neurol.
2003;
53
227-232
- 56
Welch K M, Windham J, Knight R A, Nagesh V, Hugg J W, Jacobs M, Peck D, Booker P,
Dereski M O, Levine S R.
A model to predict the histopathology of human stroke using diffusion and T2-weighted magnetic resonance imaging.
Stroke.
1995;
26
1983-1989
- 57
Jacobs M A, Mitsias P, Soltanian-Zadeh H, Santhakumar S, Ghanei A, Hammond R, Peck D J,
Chopp M, Patel S.
Multiparametric MRI tissue characterization in clinical stroke with correlation to
clinical outcome: part 2.
Stroke.
2001;
32
950-957
- 58 Alger J, Kidwell C, Mattiello J, Saver J, Sayre J, Woods R, Starkman S, Villablanca R,
Liebeskind D, Vespa P, Jahan R, Gobin Y, Duckwiler G, Vinuela F. MR Signatures of
Cerebral Infarction vs. Reversibility in Acute Stroke in Patients Treated With Thrombolytic
Therapy. Abstract. Proceedings of ISMRM, 8th Scientific Meeting and Exhibition. Denver,
Colorado: Conference Proceedings 2000: 48
- 59
Wu O, Koroshetz W J, Ostergaard L, Buonanno F S, Copen W A, Gonzalez R G, Rordorf G,
Rosen B R, Schwamm L H, Weisskoff R M, Sorensen A G.
Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-
and perfusion-weighted MR imaging.
Stroke.
2001;
32
933-942
- 60
Rose S E, Chalk J B, Griffin M P, Janke A L, Chen F, McLachan G J, Peel D, Zelaya F O,
Markus H S, Jones D K, Simmons A, O'Sullivan M, Jarosz J M, Strugnell W, Doddrell D M,
Semple J.
MRI based diffusion and perfusion predictive model to estimate stroke evolution.
Magn Reson Imaging.
2001;
19
1043-1053
Dr. med. Jens Fiehler
Klinik und Poliklinik für Neuroradiologie, Zentrum für Radiologie
Martinistraße 52
20246 Hamburg
Phone: ++49/40-42803-2746
Fax: ++49/40-42803-4640
Email: fiehler@uke.uni-hamburg.de