Exp Clin Endocrinol Diabetes 2003; 111(3): 139-145
DOI: 10.1055/s-2003-39786
Article

J. A. Barth Verlag in Georg Thieme Verlag Stuttgart · New York

Insulin-Like Effect of Low-Dose Leptin on Glucose Transport in Langendorff Rat Hearts

M. Haap 1 , B. Houdali 1 , E. Maerker 1 , W. Renn 1 , F. Machicao 1 , H. M. Hoffmeister 2 , H.-U. Häring 1 , K. Rett 3
  • 1Department of Endocrinology, Metabolism and Pathobiochemistry, Eberhard-Karls-University Tuebingen, Germany
  • 2Department of Cardiology, Eberhard-Karls-University Tuebingen, Germany
  • 3German Clinic for Diagnostics, Wiesbaden, Germany
Further Information

Publication History

Received: June 11, 2002 First decision: July 23, 2002

Accepted: November 24, 2002

Publication Date:
04 June 2003 (online)

Abstract

Background

In a murine myotube cell line (C2C12 myotubes), leptin at low physiological concentrations (1 ng/ml) has been shown to stimulate glucose transport and glycogen synthesis. The aim of the present study was to test whether an analogous leptin effect on glucose transport is detectable in the heart.

Methods and Results

We used the isolated Langendorff rat heart preparation with hemodynamic function control. Using polymerase chain reaction (RT-PCR), a 346- and 375-base fragment indicative for the short and long leptin receptor isoform was detected in the rat heart. Glucose transport rates were calculated using equimolar double tracer perfusion with the non-metabolizable glucose analog 3-O-methylglucose (3-O-MG) and the non-transportable tracer mannitol and two-compartimental modeling. 3-O-MG uptake at a perfusate glucose concentration of 11 mM was measured over 15 minutes in control hearts, hearts perfused with insulin (10 mU/ml), leptin (1 ng/ml) or insulin (10 mU/ml) plus leptin (1 ng/ml; n = 8 in each group). The basal 3-O-MG transport rate of 0,7351 ± 0,051 µmol/min/g wet weight was increased 4.18fold with insulin, 2.69fold with leptin, and 4.2fold with leptin plus insulin. Simultaneous monitoring of hemodynamic function revealed a minor and transient effect of leptin on left ventricular pressure, which was strongly augmented in coperfusion with insulin.

Conclusion

The data suggest that leptin at low physiological concentrations is able to exert a partial insulin like effect on glucose uptake. We speculate that the effect might be mediated by both leptin receptor isoforms.This leptin effect is additive to the effect of insulin and might therefore contribute to the insulin independent basal glucose supply of the heart. It can not be completely excluded that the observed leptin effect on glucose transport is secondary to altered myocardial function.

References

  • 1 Atkinson L L, Fischer M A, Lopaschuk G D. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP‐activated protein kinase - acetyl‐CoA carboxylase - malonyl‐CoA Axis.  J Biol Chem. 2002;  277 29424-29430
  • 2 Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau J P, Bortoluzzi M N, Moizo L, Lehy T, Guerre Millo M, LeMarchand Brustel Y, Lewin M JM. The stomach is a source of leptin.  Nature. 1998;  394 790-793
  • 3 Barinaga M. Cell biology - Leptin sparks blood vessel growth.  Science. 1998;  281 1582
  • 4 Berti L, Kellerer M, Capp E, Haring H U. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a P13‐kinase mediated effect.  Diabetologia. 1997;  40 606-609
  • 5 Bornstein S R, Uhlmann K, Haidan A, Ehrhart Bornstein M, Scherbaum W A. Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland: leptin inhibits cortisol release directly.  Diabetes. 1997;  46 1235-1238
  • 6 Burcelin R, Kamohara S, Li J, Tannenbaum G S, Charron M J, Friedman J M. Acute intravenous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice.  Diabetes. 1999;  48 1264-1269
  • 7 Campfield L A, Smith F J, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks.  Science. 1995;  269 546-549
  • 8 Ceddia R B, William Jr W N, Curi R. Leptin increases glucose transport and utilization in skeletal muscle in vitro.  Gen Pharmacol. 1998;  31 799-801
  • 9 Cioffi J A, Shafer A W, Zupancic T J, Smith Gbur J, Mikhail A, Platika D, Snodgrass H R. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction.  Nat Med. 1996;  2 585-589
  • 10 Coppack S W, Pinkney J H, Mohamed Ali. Leptin production in human adipose tissue.  Proc Nutr Soc. 1998;  57 461-470
  • 11 De Deckere E A, Ten Hoor P. A modified Langendorff technique for metabolic investigations.  Pflugers Arch. 1977;  370 103-105
  • 12 Duggal P S, Weitsman S R, Magoffin D A, Norman R J. Expression of the long (OB‐RB) and short (OB‐RA) forms of the leptin receptor throughout the oestrous cycle in the mature rat ovary.  Reproduction. 2002;  123 899-905
  • 13 Emilsson V, Liu Y L, Cawthorne M A, Morton N M, Davenport M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion.  Diabetes. 1997;  46 313-316
  • 14 Furnsinn C, Brunmair B, Furtmuller R, Roden M, Englisch R, Waldhausl W. Failure of leptin to affect basal and insulin‐stimulated glucose metabolism of rat skeletal muscle in vitro.  Diabetologia. 1998;  41 524-529
  • 15 Gatley S J, Holden J E, Halama J R, DeGrado T R, Bernstein D R, Ng C K. Phosphorylation of glucose analog 3‐O‐methyl‐D‐glucose by rat heart.  Biochem Biophys Res Commun. 1984;  119 1008-1014
  • 16 Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim M H, Skoda R C. Defective STAT signaling by the leptin receptor in diabetic mice.  Proc Natl Acad Sci USA. 1996;  93 6231-6235
  • 17 Haynes W G, Morgan D A, Walsh S A, Sivitz W I, Mark A L. Cardiovascular consequences of obesity: role of leptin.  Clin Exp Pharmacol Physiol. 1998;  25 65-69
  • 18 Hoggard N, Mercer J G, Rayner D V, Moar K, Trayhurn P, Williams L M. Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT‐PCR and in situ hybridization.  Biochem Biophys Res Commun. 1997;  232 383-387
  • 19 Jay T M, Dienel G A, Cruz N F, Mori K, Nelson T, Sokoloff L. Metabolic stability of 3‐O‐methyl‐D‐glucose in brain and other tissues.  J Neurochem. 1990;  55 989-1000
  • 20 Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring H U. Leptin activates PI‐3 kinase in C2C12 myotubes via janus kinase‐2 (JAK‐2) and insulin receptor substrate‐2 (IRS‐2) dependent pathways.  Diabetologia. 1997;  40 1358-1362
  • 21 Kieffer T J, Heller R S, Leech C A, Holz G G, Habener J F. Leptin suppression of insulin secretion by the activation of ATP‐sensitive K+ channels in pancreatic beta‐cells.  Diabetes. 1997;  46 1087-1093
  • 22 Kielar D, Clark J S, Ciechanowicz A, Kurzawski G, Sulikowski T, Naruszewicz M. Leptin receptor isoforms expressed in human adipose tissue.  Metabolism. 1998;  47 844-847
  • 23 Lembo G, Vecchione C, Fratta L, Marino G, Trimarco V, d'Amati G, Trimarco B. Leptin induces direct vasodilation through distinct endothelial mechanisms.  Diabetes. 2000;  49 293-297
  • 24 Mercer J G, Moar K M, Hoggard N. Localization of leptin receptor (Ob‐R) messenger ribonucleic acid in the rodent hindbrain.  Endocrinology. 1998;  139 29-34
  • 25 Mikhail A A, Beck E X, Shafer A, Barut B, Gbur J S, Zupancic T J, Schweitzer A C, Cioffi J A, Lacaud G, Ouyang B, Keller G, Snodgrass H R. Leptin stimulates fetal and adult erythroid and myeloid development.  Blood. 1997;  89 1507-1512
  • 26 Muller G, Wied S, Crecelius A, Kessler A, Eckel J. Phosphoinositolglycan‐peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms.  Endocrinology. 1997;  138 3459-3475
  • 27 Muoio D M, Dohn G L, Fiedorek Jr F T, Tapscott E B, Coleman R A. Leptin directly alters lipid partitioning in skeletal muscle.  Diabetes. 1997;  48 1360-1363
  • 28 Nemecz M, Preininger K, Englisch R, Furnsinn C, Schneider B, Waldhausl W, Roden M. Acute effect of leptin on hepatic glycogenolysis and gluconeogenesis in perfused rat liver.  Hepatology. 1999;  29 166-172
  • 29 Pelleymounter M A, Cullen M J, Baker M B, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice.  Science. 1995;  269 540-543
  • 30 Rett K, Maerker E, Renn W, Gilst v W, Haring H U. Perfusion‐independent effect of bradykinin and fosinoprilate on glucose transport in Langendorff rat hearts.  Am J Cardiol. 1997;  80 143-147
  • 31 Schwartz M W, Seeley R J, Campfield L A, Burn P, Baskin D G. Identification of targets of leptin action in rat hypothalamus.  J Clin Invest. 1996;  98 1101-1106
  • 32 Shek E W, Brands M W, Hall J E. Chronic leptin infusion increases arterial pressure.  Hypertension. 1998;  31 409-414
  • 33 Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications.  Curr Probl Cardiol. 1994;  19 59-113
  • 34 Tartaglia L A. The leptin receptor.  J Biol Chem. 1997;  272 6093-6096
  • 35 Zhao A Z, Shinohara M M, Huang D, Shimizu M, Eldar‐Finkelman H, Krebs E G, Beavo J A, Bornfeldt K E. Leptin induces insulin‐like signaling that antagonizes cAMP elevation by glucagon in hepatocytes.  J Biol Chem. 2000;  275 11348-11354
  • 36 Zierath J R, Frevert E U, Ryder J W, Berggren P O, Kahn B B. Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes.  Diabetes. 1998;  47 1-4

Prof. H.-U. Häring

Eberhard-Karls-Universität Tübingen
Department of Endocrinology, Metabolism and Pathobiochemistry

Otfried-Müller-Str. 10

72076 Tübingen

Germany

Phone: +49 7071 2983670

Fax: +49 7071 292784

Email: mmhaap@med.uni-tuebingen.de

    >