Der Nuklearmediziner 2002; 25(3): 157-164
DOI: 10.1055/s-2002-34110
Benzodiazepinrezeptoren

© Georg Thieme Verlag Stuttgart · New York

Der GABA-A-Benzodiazepinrezeptorkomplex: Rolle von PET und SPECT in Neurologie und Psychiatrie

The GABA-A Benzodiazepine Receptor Complex: Role of PET and SPECT in Neurology and PsychiatryF. D. Juengling1 , M. Schäfer2 , A. Heinz2
  • 1Abteilung für Nuklearmedizin, Radiologie III, Universitätsklinik Ulm
  • 2Klinik für Psychiatrie und Psychotherapie, Charité, Humboldt-Universität zu Berlin
Further Information

Publication History

Publication Date:
16 September 2002 (online)

Zusammenfassung

Mit der Entwicklung selektiver Liganden für den GABA-A-Benzodiazepinrezeptorkomplex (GBZR) hat die nuklearmedizinische Bildgebung mittels Positronen-Emissionstomographie (PET) und Single-Photon-Emissionscomputertomographie (SPECT) einen festen Stellenwert für Klinik und Forschung in der Neurologie und Psychiatrie erlangt. Die vorliegende Überblicksarbeit fasst den aktuellen Wissensstand von Anwendungsmöglichkeiten und -grenzen der nuklearmedizinischen Bildgebung der GBZR in vivo zusammen und beleuchtet ihren klinischen Nutzen. Die wachsende Bedeutung für das Verständnis der Pathophysiologie und pharmakotherapeutischer Konzepte unterschiedlicher psychiatrischer Erkrankungen wird herausgestellt.

Abstract

Nuclear medicine imaging techniques such as positron emission tomography (PET) and single photon emission tomography (SPECT) for selective depiction of GABA-A-benzodiazepine receptor (GBZR) binding are complementary investigations in the diagnostic process of neurological and psychiatric disorders. This review summarizes the current knowledge about options and limitations of PET and SPECT for in vivo diagnostics in neurology and psychiatry. The growing importance of GBZR-imaging for the understanding of pathophysiology and pharmacological treatment in different psychiatric syndromes is discussed.

Literatur

  • 1 MaziÉre M, Prenant C, Sastre J, Crouzel M, Comar D, Hantraye P. et al . 11C-Ro 15-1788 et 11C-flunitrazepam, deux coordinats pour l'etude par tomographie par positons des sites de liaison des benzodiazepines.  C R Seances Acad Sci III. 1983;  296 871-876
  • 2 Grunder G, Siessmeier T, Lange-Asschenfeldt C, Vernaleken I, Buchholz H G, Stoeter P. et al . [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors.  Eur J Nucl Med. 2001;  28 1463-1470
  • 3 Moerlein S M, Perlmutter J S. Binding of 5-(2′-[18F]fluoroethyl)flumazenil to central benzodiazepine receptors measured in living baboon by positron emission tomography.  Eur J Pharmacol. 1992;  218 109-115
  • 4 Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci.  Lancet. 1988;  2 863-866
  • 5 Juhasz C, Chugani D C, Muzik O, Watson C, Shah J, Shah A. et al . Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy.  Neurology. 2000;  55 825-835
  • 6 Koepp M J, Hammers A, Labbe C, Woermann F G, Brooks D J, Duncan J S. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI.  Neurology. 2000;  54 332-339
  • 7 Nagy F, Chugani D C, Juhasz C, da Silva E A, Muzik O, Kupsky W. et al . Altered in vitro and in vivo flumazenil binding in human epileptogenic neocortex.  J Cereb Blood Flow Metab. 1999;  19 939-947
  • 8 Szelies B, Sobesky J, Pawlik G, Mielke R, Bauer B, Herholz K. et al . Impaired benzodiazepine receptor binding in peri-lesional cortex of patients with symptomatic epilepsies studied by [(11)C]-flumazenil PET.  Eur J Neurol. 2002;  9 137-142
  • 9 Kim J H, Tien R D, Felsberg G J, Osumi A K, Lee N, Friedman A H. Fast spin-echo MR in hippocampal sclerosis: correlation with pathology and surgery.  AJNR Am J Neuroradiol. 1995;  16 627-636
  • 10 Henry T R, Frey K A, Sackellares J C, Gilman S, Koeppe R A, Brunberg J A. et al . In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy.  Neurology. 1993;  43 1998-2006
  • 11 Koepp M J, Richardson M P, Brooks D J, Poline J B, Van-Paesschen W, Friston K J. et al . Cerebral benzodiazepine receptors in hippocampal sclerosis. An objective in vivo analysis.  Brain. 1996;  119 1677-1687
  • 12 Szelies B, Weber-Luxenburger G, Mielke R, Pawlik G, Kessler J, Pietrzyk U. et al . Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry.  Eur J Neurol. 2000;  7 393-400
  • 13 Feeney D M, Baron J C. Diaschisis.  Stroke. 1986;  17 817-830
  • 14 Juhasz C, Chugani D C, Muzik O, Watson C, Shah J, Shah A. et al . Is epileptogenic cortex truly hypometabolic on interictal positron emission tomography?.  Ann Neurol. 2000;  48 88-96
  • 15 Koutroumanidis M, Binnie C D, Elwes R D, Polkey C E, Seed P, Alarcon G. et al . Interictal regional slow activity in temporal lobe epilepsy correlates with lateral temporal hypometabolism as imaged with 18FDG PET: neurophysiological and metabolic implications.  J Neurol Neurosurg Psychiatry. 1998;  65 170-176
  • 16 Juhasz C, Behen M E, Muzik O, Chugani D C, Chugani H T. Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression.  Epilepsia. 2001;  42 991-1001
  • 17 Juengling F D, Kassubek J, Otte A. Standardization of cerebral PET imaging in clinical neurological diagnostics.  Eur J Nucl Med. 2000;  27 98
  • 18 Richardson M P, Friston K J, Sisodiya S M, Koepp M J, Ashburner J, Free S L. et al . Cortical grey matter and benzodiazepine receptors in malformations of cortical development. A voxel-based comparison of structural and functional imaging data.  Brain. 1997;  120 1961-1973
  • 19 Koepp M J, Richardson M P, Labbe C, Brooks D J, Cunningham V J, Ashburner J. et al . 11C-flumazenil PET, volumetric MRI, and quantitative pathology in mesial temporal lobe epilepsy.  Neurology. 1997;  49 764-773
  • 20 Hammers A, Koepp M J, Labbe C, Brooks D J, Thom M, Cunningham V J. et al . Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy.  Neurology. 2001;  56 897-906
  • 21 Koepp M J, Labbe C, Richardson M P, Brooks D J, Van Paesschen W, Cunningham V J. et al . Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis.  Brain. 1997;  120 1865-1876
  • 22 Hand K S, Baird V H, Van-Paesschen W, Koepp M J, Revesz T, Thom M. et al . Central benzodiazepine receptor autoradiography in hippocampal sclerosis.  Br J Pharmacol. 1997;  122 358-364
  • 23 Koepp M J, Hand K S, Labbe C, Richardson M P, Van-Paesschen W, Baird V H. et al . In vivo [11C]flumazenil-PET correlates with ex vivo [3H]flumazenil autoradiography in hippocampal sclerosis.  Ann Neurol. 1998;  43 618-626
  • 24 Desbiens R, Berkovic S F, Dubeau F, Andermann F, Laxer K D, Harvey S. et al . Life threatening focal status epilepticus due to occult cortical dysplasia.  Arch Neurol. 1993;  50 695-700
  • 25 Arnold S, Berthele A, Drzezga A, Tolle T R, Weis S, Werhahn K J. et al . Reduction of benzodiazepine receptor binding is related to the seizure onset zone in extratemporal focal cortical dysplasia.  Epilepsia. 2000;  41 818-824
  • 26 Bouilleret V, Dupont S, Spelle L, Baulac M, Samson Y, Semah F. Insular cortex involvement in mesiotemporal lobe epilepsy: a positron emission tomography study.  Ann Neurol. 2002;  51 202-208
  • 27 Richardson M P, Koepp M J, Brooks D J, Fish D R, Duncan J S. Benzodiazepine receptors in focal epilepsy with cortical dysgenesis: an 11C-flumazenil PET study.  Ann Neurol. 1996;  40 188-198
  • 28 Hammers A, Koepp M J, Richardson M P, Labbe C, Brooks D J, Cunningham V J. et al . Central benzodiazepine receptors in malformations of cortical development: A quantitative study.  Brain. 2001;  124 1555-1565
  • 29 Bartenstein P, Ludolph A, Schober O, Lottes G, Scheidhauer K, Sciuk J. et al . Benzodiazepine receptors and cerebral blood flow in partial epilepsy.  Eur J Nucl Med. 1991;  18 111-118
  • 30 Savic I, Thorell J O, Roland P. [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions.  Epilepsia. 1995;  36 1225-1232
  • 31 Richardson M P, Koepp M J, Brooks D J, Duncan J S. 11C-flumazenil PET in neocortical epilepsy.  Neurology. 1998;  51 485-492
  • 32 Winkler P A, Herzog C, Henkel A, Arnold S, Werhahn K J, Yousry T A. et al . Nichtinvasives Protokoll für die epilepsiechirurgische Behandlung fokaler Epilepsien.  Nervenarzt. 1999;  70 1088-1093
  • 33 Juhasz C, Chugani D C, Muzik O, Shah A, Shah J, Watson C. et al . Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome.  Neurology. 2001;  56 1650-1658
  • 34 Tanaka F, Yonekura Y, Ikeda A, Terada K, Mikuni N, Nishizawa S. et al . Presurgical identification of epileptic foci with iodine-123 iomazenil SPET: comparison with brain perfusion SPET and FDG PET.  Eur J Nucl Med. 1997;  24 27-34
  • 35 Venz S, Hierholzer J, Cordes M, Straub H B, Keske U, Meencke H J. et al . Quantitative estimation of I-123-Iomazenil receptor binding in temporal lobe epilepsies using two SPECT acquisitions-comparison with the regional cerebral blood flow and a compartment model.  Nuklearmedizin. 1998;  37 49-56
  • 36 Bremner J D, Baldwin R, Horti A, Staib L H, Ng C K, Tan P Z. et al . Quantitation of benzodiazepine receptor binding with PET [11C]iomazenil and SPECT [123I]iomazenil: preliminary results of a direct comparison in healthy human subjects.  Psychiatry Res. 1999;  91 79-91
  • 37 Bremner J D, Horti A, Staib L H, Zea-Ponce Y, Soufer R, Charney D S. et al . Kinetic modeling of benzodiazepine receptor binding with PET and high specific activity [(11)C]Iomazenil in healthy human subjects.  Synapse. 2000;  35 68-77
  • 38 Millet P, Graf C, Buck A, Walder B, Westera G, Broggini C. et al . Similarity and robustness of PET and SPECT binding parameters for benzodiazepine receptors.  J Cereb Blood Flow Metab. 2000;  20 1587-1603
  • 39 Heiss W D, Kracht L, Grond M, Rudolf J, Bauer B, Wienhard K. et al . Early [(11)C]Flumazenil/H(2)O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy.  Stroke. 2000;  31 366-369
  • 40 Odano I, Miyashita K, Minoshima S, Nakajima T, Fujita M, Takahashi N. et al . A potential use of a 123I-labelled benzodiazepine receptor antagonist as a predictor of neuronal cell viability: comparisons with 14C-labelled 2-deoxyglucose autoradiography and histopathological examination.  Nucl Med Commun. 1995;  16 443-446
  • 41 Lloyd C M, Richardson M P, Brooks D J, Al-Chalabi A, Leigh P N. Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil.  Brain. 2000;  123 2289-2296
  • 42 Pinborg L H, Videbaek C, Hasselbalch S G, Sorensen S A, Wagner A, Paulson O B. et al . Benzodiazepine receptor quantification in Huntington's disease with [(123)I]omazenil and SPECT.  J Neurol Neurosurg Psychiatry. 2001;  70 657-661
  • 43 Robertson H A, Martin I L, Candy J M. Differences in benzodiazepine receptor binding in Maudsley reactive and Maudsley non-reactive rats.  Eur J Pharmacol. 1978;  50 455-457
  • 44 Drugan R C, Morrow A L, Weizman R, Weizman A, Deutsch S I, Crawley J N. et al . Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy.  Brain Res. 1989;  487 45-51
  • 45 Drugan R C, Basile A S, Crawley J N, Paul S M, Skolnick P. Inescapable shock reduces [3H]Ro 5-4864 binding to “peripheral-type” benzodiazepine receptors in the rat.  Pharmacol Biochem Behav. 1986;  24 1673-1677
  • 46 Weizman R, Weizman A, Kook K A, Vocci F, Deutsch S I, Paul S M. Repeated swim stress alters brain benzodiazepine receptors measured in vivo.  J Pharmacol Exp Ther. 1989;  249 701-707
  • 47 Weizman A, Bidder M, Fares F, Gavish M. Food deprivation modulates gamma-aminobutyric acid receptors and peripheral benzodiazepine binding sites in rats.  Brain Res. 1990;  535 96-100
  • 48 Braestrup C, Schmiechen R, Neef G, Nielsen M, Petersen E N. Interaction of convulsive ligands with benzodiazepine receptors.  Science. 1982;  216 1241-1243
  • 49 Braestrup C, Nielsen M. Anxiety.  Lancet. 1982;  2 1030-1034
  • 50 Braestrup C, Nielsen M. beta-Carbolines and benzodiazepine receptors.  Prog Clin Biol Res. 1982;  90 227-231
  • 51 Ninan P T, Insel T M, Cohen R M, Cook J M, Skolnick P, Paul S M. Benzodiazepine receptor-mediated experimental “anxiety” in primates.  Science. 1982;  218 1332-1334
  • 52 Dorow R, Horowski R, Paschelke G, Amin M. Severe anxiety induced by FG 7142, a beta-carboline ligand for benzodiazepine receptors.  Lancet. 1983;  2 98-99
  • 53 Nutt D J, Glue P, Lawson C, Wilson S. Flumazenil provocation of panic attacks. Evidence for altered benzodiazepine receptor sensitivity in panic disorder.  Arch Gen Psychiatry. 1990;  47 917-925
  • 54 Woods S W, Charney D S, Silver J M, Krystal J H, Heninger G R. Behavioral, biochemical, and cardiovascular responses to the benzodiazepine receptor antagonist flumazenil in panic disorder.  Psychiatry Res. 1991;  36 115-127
  • 55 Schlegel S, Steinert H, Bockisch A, Hahn K, Schloesser R, Benkert O. Decreased benzodiazepine receptor binding in panic disorder measured by IOMAZENIL-SPECT. A preliminary report.  Eur Arch Psychiatry Clin Neurosci. 1994;  244 49-51
  • 56 Kuikka J T, Pitkanen A, Lepola U, Partanen K, Vainio P, Bergstrom K A. et al . Abnormal regional benzodiazepine receptor uptake in the prefrontal cortex in patients with panic disorder.  Nucl Med Commun. 1995;  16 273-280
  • 57 Bremner J D, Innis R B, White T, Fujita M, Silbersweig D, Goddard A W. et al . SPECT [I-123]iomazenil measurement of the benzodiazepine receptor in panic disorder.  Biol Psychiatry. 2000;  47 96-106
  • 58 Malizia A L, Cunningham V J, Bell C J, Liddle P F, Jones T, Nutt D J. Decreased brain GABA(A)-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study.  Arch Gen Psychiatry. 1998;  55 715-720
  • 59 Tiihonen J, Kuikka J, Rasanen P, Lepola U, Koponen H, Liuska A. et al . Cerebral benzodiazepine receptor binding and distribution in generalized anxiety disorder: a fractal analysis.  Mol Psychiatry. 1997;  2 463-471
  • 60 Vythilingam M, Anderson E R, Goddard A, Woods S W, Staib L H, Charney D S. et al . Temporal lobe volume in panic disorder - a quantitative magnetic resonance imaging study.  Psychiatry Res. 2000;  99 75-82
  • 61 Fontaine R, Breton G, Dery R, Fontaine S, Elie R. Temporal lobe abnormalities in panic disorder: an MRI study.  Biol Psychiatry. 1990;  27 304-310
  • 62 Spitzer R L, Williams J B, Skodol A E. DSM-III: the major achievements and an overview.  Am J Psychiatry. 1980;  137 151-164
  • 63 Gelpin E, Bonne O, Peri T, Brandes T, Shalev A. Treatment of recent trauma survivors with benzodiazepines: a prospective study.  J Clin Psychiatry. 1996;  57 390-394
  • 64 Bremner J D. Neuroimaging of childhood trauma.  Semin Clin Neuropsychiatry. 2002;  7 104-112
  • 65 Bonne O, Brandes D, Gilboa A, Gomori J M, Shenton M E, Pitman R K. et al . Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD.  Am J Psychiatry. 2001;  158 1248-1251
  • 66 Carrion V G, Weems C F, Eliez S, Patwardhan A, Brown W, Ray R D. et al . Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder.  Biol Psychiatry. 2001;  50 943-951
  • 67 Bremner J D, Innis R B, Southwick S M, Staib L, Zoghbi S, Charney D S. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder.  Am J Psychiatry. 2000;  157 1120-1126
  • 68 Skerritt J H, Johnston G A, Braestrup C. Modulation of GABA binding to rat brain membranes by alkyl beta-carboline-3-carboxylate esters.  Eur J Pharmacol. 1982;  86 299-301
  • 69 Pauli S, Liljequist S, Farde L, Swahn C G, Halldin C, Litton J E. et al . PET analysis of alcohol interaction with the brain disposition of [11C]flumazenil.  Psychopharmacology (Berl). 1992;  107 180-185
  • 70 Robertson C C, Sellers E M. Alcohol intoxication and the alcohol withdrawal syndrome.  Postgrad Med. 1978;  64 133-138
  • 71 Hemmingsen R, Braestrup C, Nielsen M, Barry D I. The benzodiazepine/GABA receptor complex during severe ethanol intoxication and withdrawal in the rat.  Acta Psychiatr Scand. 1982;  65 120-126
  • 72 Potokar J, Coupland N, Glue P, Groves S, Malizia A, Bailey J. et al . Flumazenil in alcohol withdrawal: a double-blind placebo-controlled study.  Alcohol Alcohol. 1997;  32 605-611
  • 73 Freund G, Ballinger W E. Loss of muscarinic and benzodiazepine neuroreceptors from hippocampus of alcohol abusers.  Alcohol. 1989;  6 23-31
  • 74 Freund G, Ballinger W E. Decrease of benzodiazepine receptors in frontal cortex of alcoholics.  Alcohol. 1988;  5 275-282
  • 75 Korpi E R, Uusi-Oukari M, Wegelius K, Casanova M, Zito M, Kleinman J E. Cerebellar and frontal cortical benzodiazepine receptors in human alcoholics and chronically alcohol-drinking rats.  Biol Psychiatry. 1992;  31 774-786
  • 76 Litton J E, Neiman J, Pauli S, Farde L, Hindmarsh T, Halldin C. et al . PET analysis of [11C]flumazenil binding to benzodiazepine receptors in chronic alcohol-dependent men and healthy controls.  Psychiatry Res. 1993;  50 1-13
  • 77 Farde L, Pauli S, Litton J E, Halldin C, Neiman J, Sedvall G. PET-determination of benzodiazepine receptor binding in studies on alcoholism.  Exs. 1994;  71 143-153
  • 78 Nutt D, Glue P, Wilson S, Groves S, Coupland N, Bailey J. Flumazenil in alcohol withdrawal.  Alcohol Alcohol Suppl. 1993;  2 337-341
  • 79 Gilman S, Adams K M, Johnson-Greene D, Koeppe R A, Junck L, Kluin K J. et al . Effects of disulfiram on positron emission tomography and neuropsychological studies in severe chronic alcoholism.  Alcohol Clin Exp Res. 1996;  20 1456-1461
  • 80 Abi-Dargham A, Krystal J H, Anjilvel S, Scanley B E, Zoghbi S, Baldwin R M. et al . Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and [123I]iomazenil.  Am J Psychiatry. 1998;  155 1550-1555
  • 81 Lingford-Hughes A R, Acton P D, Gacinovic S, Suckling J, Busatto G F, Boddington S J. et al . Reduced levels of GABA-benzodiazepine receptor in alcohol dependency in the absence of grey matter atrophy.  Br J Psychiatry. 1998;  173 116-122
  • 82 Lingford-Hughes A R, Acton P D, Gacinovic S, Boddington S J, Costa D C, Pilowsky L S. et al . Levels of gamma-aminobutyric acid-benzodiazepine receptors in abstinent, alcohol-dependent women: preliminary findings from an 123I-iomazenil single photon emission tomography study.  Alcohol Clin Exp Res. 2000;  24 1449-1455
  • 83 Greenfield S F. Women and alcohol use disorders.  Harv Rev Psychiatry. 2002;  10 76-85
  • 84 Wang G J, Volkow N D, Fowler J S, Pappas N R, Wong C T, Pascani K. et al . Regional cerebral metabolism in female alcoholics of moderate severity does not differ from that of controls.  Alcohol Clin Exp Res. 1998;  22 1850-1854
  • 85 Garbutt J C, van-Kammen D P. The interaction between GABA and dopamine: implications for schizophrenia.  Schizophr Bull. 1983;  9 336-353
  • 86 Stevens J, Wilson K, Foote W. GABA blockade, dopamine and schizophrenia: experimental studies in the cat.  Psychopharmacologia. 1974;  39 105-119
  • 87 Squires R F, Saederup E. Indomethacin/ibuprofen-like anti-inflammatory agents selectively potentiate the gamma-aminobutyric acid-antagonistic effects of several norfloxacin-like quinolone antibacterial agents on [35S]t-butylbicyclophosphorothionate binding.  Mol Pharmacol. 1993;  43 795-800
  • 88 Simpson M D, Slater P, Deakin J F, Royston M C, Skan W J. Reduced GABA uptake sites in the temporal lobe in schizophrenia.  Neurosci Lett. 1989;  107 211-215
  • 89 Reynolds G P, Czudek C, Andrews H B. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia.  Biol Psychiatry. 1990;  27 1038-1044
  • 90 Busatto G F, Pilowsky L S, Costa D C, Ell P J, David A S, Lucey J V et al. Correlation between reduced in vivo benzodiazepine receptor binding and severity of psychotic symptoms in schizophrenia.  Am J Psychiatry. 1997;  154 56-63
  • 91 Ball S, Busatto G F, David A S, Jones S H, Hemsley D R, Pilowsky L S. et al . Cognitive functioning and GABAA/benzodiazepine receptor binding in schizophrenia: a 123I-iomazenil SPET study.  Biol Psychiatry. 1998;  43 107-117
  • 92 Verhoeff N P, Soares J C, D'Souza C D, Gil R, Degen K, Abi-Dargham A. et al . [123I]Iomazenil SPECT benzodiazepine receptor imaging in schizophrenia.  Psychiatry Res. 1999;  91 163-173
  • 93 Abi-Dargham A, Laruelle M, Krystal J, D≈ os;Souza C, Zoghbi S, Baldwin R M. et al . No evidence of altered in vivo benzodiazepine receptor binding in schizophrenia.  Neuropsychopharmacology. 1999;  20 650-661
  • 94 Soares J C, Innis R B. Neurochemical brain imaging investigations of schizophrenia.  Biol Psychiatry. 1999;  46 600-615
  • 95 Moeller H J, Kissling W, Wendt G. Psychopharmakotherapie. Ein Leitfaden für Klinik und Praxis.  Stuttgart: Kohlhammer-Verlag; 1989..

Dr. F. D. Juengling

Abteilung für Nuklearmedizin, Radiologie III

Universitätsklinik Ulm

Robert Koch-Str. 8

89075 Ulm

Phone: +49/7 31/50 02 45 06

Fax: +49/7 31/50 02 45 12

Email: freimut.juengling@medizin.uni-ulm.de

    >