Minim Invasive Neurosurg 2002; 45(1): 19-23
DOI: 10.1055/s-2002-23578
Original Article
Georg Thieme Verlag Stuttgart · New York

A Non-Invasive Communication Device for the Paralyzed

J.  Kaiser1 , A.  Kübler1 , T.  Hinterberger1 , N.  Neumann1 , N.  Birbaumer1, 2
  • 1 1Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-University of Tübingen, Germany
  • 2 2Department of General Psychology, University of Padua, Italy
Further Information

Publication History

Publication Date:
02 April 2002 (online)

Abstract

An EEG-based communication system has been developed to re-establish communication in severely paralyzed patients who operate the device by generating shifts of their slow cortical potentials. Training to gain control over slow cortical potentials was based on visual feedback and operant conditioning strategies. The vertical movement of a graphic signal on a computer screen informs the patients about the course of their slow cortical potential amplitude. Positive slow cortical potential shifts move the cursor up, negative shifts move it down. These shifts are then translated into binary responses. When a patient has achieved reliable control over his/her slow cortical potential shifts, these responses can be used to select or reject items presented at the bottom of the screen. As learning processes and applications differ considerably between patients, the present paper describes the data from one patient with amyotrophic lateral sclerosis. After about three months of training, this patient gained stable, near-perfect control over his slow cortical potentials. This skill enabled him to operate a specially designed program to communicate messages to his caregivers.

References

  • 1 Bach J R. Amyotrophic lateral sclerosis. Communication status and survival with ventilatory support.  Am J Phys Med Rehabil. 1993;  72 343-349
  • 2 Wolpaw J R, McFarland D J, Neat G W, Forneris C A. An EEG-based brain-computer interface for cursor control.  Electroenephalogr Clin Neurophysiol. 1991;  78 252-259
  • 3 Wolpaw J R, McFarland D J. Multichannel EEG-based brain-computer communication.  Electroencephalogr Clin Neurophysiol. 1994;  90 444-449
  • 4 Wolpaw J R, Flotzinger D, Pfurtscheller G, McFarland D J. Timing of EEG-based cursor control.  J Clin Neurophysiol. 1997;  14 529-538
  • 5 Guger C, Schlögl A, Walterspacher D, Pfurtscheller G. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.  Biomed Tech (Berl). 1999;  44 12-16
  • 6 Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C. Brain oscillations control hand orthosis in a tetraplegic.  Neurosci Lett. 2000;  292 211-214
  • 7 Birbaumer N, Elbert T, Canavan A G, Rockstroh B. Slow potentials of the cerebral cortex and behavior.  Physiol Rev. 1990;  70 1-41
  • 8 Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed.  Nature. 1999;  398 297-298
  • 9 Birbaumer N, Kübler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H. The thought translation device (TTD) for completely paralyzed patients.  IEEE Trans Rehabil Eng. 2000;  8 190-193
  • 10 Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N. Biofeedback of slow cortical potentials.  Electroencephalogr Clin Neurophysiol. 1980;  48 293-301
  • 11 Kotchoubey B, Schneider D, Schleichert H, Strehl U, Uhlmann C, Blankenhorn V, Fröscher W, Birbaumer N. Self-regulation of slow cortical potentials in epilepsy: a retrial with analysis of influencing factors.  Epilepsy Res. 1996;  25 269-276
  • 12 Rockstroh B, Elbert T, Birbaumer N, Wolf P, Duchting-Roth A, Reker M, Daum I, Lutzenberger W, Dichgans J. Cortical self-regulation in patients with epilepsies.  Epilepsy Res. 1993;  14 63-72
  • 13 Kübler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N. Brain-computer communication: unlocking the locked in.  Psychological Bulletin. 2001;  127 358-375
  • 14 Kübler A, Kotchoubey B, Hinterberger T, Ghanayim N, Perelmouter J, Schauer M, Fritsch C, Taub E, Birbaumer N. The thought translation device: a neurophysiological approach to communication in total motor paralysis.  Exp Brain Res. 1999;  124 223-232
  • 15 Kübler A, Kotchoubey B, Salzmann H P, Ghanayim N, Perelmouter J, Homberg V, Birbaumer N. Self-regulation of slow cortical potentials in completely paralyzed human patients.  Neurosci Lett. 1998;  252 171-174
  • 16 Birbaumer N. Slow cortical potentials. Plasticity, operant control, and behavioral effects.  The Neuroscientist. 1999;  5 74-78
  • 17 Perelmouter J, Kotchoubey B, Kübler A, Taub E, Birbaumer N. Language support program for thought-translation-devices.  Automed. 1999;  18 67-84
  • 18 Caroscio J T, Mulvihill M N, Sterling R, Abrams B. Amyotrophic lateral sclerosis. Its natural history.  Neurol Clin. 1987;  5 1-8
  • 19 Kotchoubey B, Schleichert H, Lutzenberger W, Birbaumer N. A new method for self-regulation of slow cortical potentials in a timed paradigm.  Appl Psychophysiol Biofeedback. 1997;  22 77-93
  • 20 Kübler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T, Birbaumer N. Brain-computer communication: self-regulation of slow cortical potentials for verbal communication.  Arch Phys Med Rehab. (in press); 
  • 21 Kalb G, Rabenstein R, Rost D H. Lesen und Verstehen: Diagnose (LUV-D). Braunschweig: Westermann 1979
  • 22 Kaiser J, Perelmouter J, Iversen I H, Neumann N, Ghanayim N, Hinterberger T, Kübler A, Kotchoubey B, Birbaumer N. Self-initiation of EEG-based communication in paralyzed patients.  Clin Neurophysiol. (in press); 
  • 23 Donchin E, Spencer K M, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-based brain-computer interface.  IEEE Trans Rehabil Eng. 2000;  8 174-179
  • 24 Wolpaw J R, McFarland D J, Vaughan T M. Brain-computer interface research at the Wadsworth Center.  IEEE Trans Rehabil Eng. 2000;  8 222-226
  • 25 Chapin J K, Moxon K A, Markowitz R S, Nicolelis M A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex.  Nat Neurosci. 1999;  2 664-670
  • 26 Wessberg J, Stambaugh C R, Kralik J D, Beck P D, Laubach M, Chapin J K, Kim J, Biggs S J, Srinivasan M A, Nicolelis M A. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.  Nature. 2000;  408 361-365
  • 27 Kennedy P R, Bakay R A. Restoration of neural output from a paralyzed patient by a direct brain connection.  Neuroreport. 1998;  9 1707-1711
  • 28 Kennedy P R, Bakay R A, Moore M M, Adams K, Goldwaithe J. Direct control of a computer from the human central nervous system.  IEEE Trans Rehabil Eng. 2000;  8 198-202
  • 29 Fetz E E. Real-time control of a robotic arm by neuronal ensembles.  Nat Neurosci. 1999;  2 583-584

Dr. J. Kaiser

Institute of Medical Psychology and Behavioral Neurobiology · University of Tübingen

Gartenstr. 29

72074 Tübingen

Germany

Phone: +49-7071-297-4224

Fax: +49-7071-29-5956

Email: jochen.kaiser@uni-tuebingen.de

    >