Minim Invasive Neurosurg 2001; 44(4): 240-242
DOI: 10.1055/s-2001-19929
Original Article
Georg Thieme Verlag Stuttgart · New York

Development and Clinical Application of Near-Infrared Surgical Microscope: Preliminary Report

T.  Kuroiwa1 , Y.  Kajimoto1 , T.  Ohta1
  • 1Department of Neurosurgery, Osaka Medical College, Takatsuki City, Osaka, Japan
Further Information

Publication History

Publication Date:
01 February 2002 (online)

Abstract

Visualization of near-infrared fluorescence through a surgical microscope can provide intraoperative information about deep-seated tissues. We studied the possibility of taking a near-infrared image through a surgical microscope after intravenous injection of indocyanine green (ICG). The surgical microscopes we used were Zeiss models OPMI MD and OPMI CS-NC. We used a halogen lamp as a light source, a band pass filter of 760 - 810 nm as an excitation filter, a laser light of 800 nm as an external light source, and a band pass filter of 820 - 920 nm as a barrier filter. Near-infrared fluorescence of vessels on the brain surface and of the dural sinus was visualized through the dura mater after intravenous injection of 25 mg ICG using a Hitachi KP-160 camera. Near-infrared fluorescence of vessels on the brain surface was observed through the dura mater. Venous images were clearer than were arterial ones. The dural sinus and the bridging veins were also clearly visualized. These results suggest that a clinical application of near-infrared fluorescence microscopy is possible. However, a stronger fluorescence emitted from ICG will be necessary for such a microscope to have practical use.

References

  • 1 Kuroiwa T, Kajimoto Y, Ohta T. Development of a fluorescein operative microscope for use during malignant glioma surgery - A technical note and preliminary report.  Surg Neurol. 1998;  50 41-49
  • 2 Kuroiwa T, Kajimoto Y, Ohta T. Comparison between operative findings on malignant glioma by a fluorescein surgical microscopy and histological findings.  Neurol Res. 1999;  21 130-134
  • 3 Jäbis F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.  Science. 1977;  198 1264-1267
  • 4 Barker K J. Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma α1-lipoproteins.  Proc Soc Exp Biol Med. 1966;  122 957-963
  • 5 Benson R C, Kues H A. Fluorescence properties of indocyanine green as related to angiography.  Phys Med Biol. 1978;  23 159-163
  • 6 Janecki J, Krawcynski J. Labeling with indocyanine green of serum protein from normal person and patient with acute viral hepatitis.  Clin Chem. 1970;  16 1008-1011
  • 7 Flower R W, Hochheimer B F. A clinical technique and apparatus for simultaneous angiography of the separate retinal and choroidal circulations.  Invest Ophthalmol. 1973;  12 248-261
  • 8 Schneider A, Kaboth A, Neuhauser L. Detection of subretinal neovascular membranes with indocyanine green and an infrared scanning laser ophthalmoscope.  Am J Ophthalmol. 1992;  113 45-51
  • 9 McCormick P W, Stewart M, Goetting M G, Balakrishnan G. Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans.  Stroke. 1991;  22 596-602
  • 10 Patel J, Marks K, Roberts I, Azzopardi D, Edwards A D. Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green.  Pediat Res. 1998;  43 34-39
  • 11 Reynolds E O, McCormick D C, Roth S C, Edwards A D, Wyatt J S. New non-invasive methods for the investigation of cerebral oxidative metabolism and haemodynamics in newborn infants.  Ann Med. 1991;  23 681-686
  • 12 Shiga T, Tanabe K, Nakase Y, Shida T, Chance B. Development of a portable tissue oximeter using near-infrared spectroscopy.  Med Biol Eng Comput. 1995;  33 622-626
  • 13 Wyatt J S, Cope M, Delpy D T, Wray S. Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry.  Lancet. 1986;  2 1063-1065
  • 14 Dujovny M, Slavin K V, Hernandez G, Geremia G K, Ausman J I. Use of cerebral oximetry to monitor brain oxygenation reserves for skull base surgery.  Skull Base Surgery. 1994;  4 117-121
  • 15 Gopinath S P, Robertson C S, Constant C F. et al . Early detection of delayed traumatic intracranial hematomas using near-infrared spectroscopy.  J Neurosurg. 1995;  83 438-444
  • 16 Gopinath S P, Robertson C S, Grossman R G, Chance B. Near-infrared spectroscopic localization of intracranial hematomas.  J Neurosurg. 1993;  79 43-47
  • 17 Haglund M M, Berger M S, Hochman D W. Enhanced optical imaging of human gliomas and tumor margins.  Neurosurgery. 1996;  38 308-317
  • 18 Haglund M M, Hochman D W, Spence A M, Berger M S. Enhanced optical imaging of rat gliomas and tumor margins.  Neurosurgery. 1994;  35 930-941
  • 19 Sakatani K, Kashiwasake M, Taka Y, Wang S, Zuo H, Yamamoto K, Shimizu L. Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence.  J Neurosurg. 1997;  87 738-745
  • 20 Flower R W. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye.  Invest Ophthalmol Vis Sci. 1973;  12 881-895
  • 21 Hochheimer B F, D'Anna S A. Angiography with new dyes.  Exe Eye Res. 1978;  27 1-16
  • 22 Hyvarinen L, Flower R W. Indocyanine green fluorescence angiography.  Acta Ophthalmol. 1980;  58 528-538
  • 23 Schofl G I. Studies on inflammation. III. Growing capillares: Their structure and permeability.  Virchowa Arch Pathol Anat. 1963;  337 91-141
  • 24 Cherrick G R, Stein S W, Leevy C M, Davidson C S. Indocyanine green: Observations on its physical properties, plasma decay and hepatic extraction.  J Clin Invest. 1960;  39 592-600

T. Kuroiwa,M.D. 

Department of Neurosurgery · Osaka Medical College

2 - 7 Daigakumachi

Takatsuki City

Osaka 569

Japan

Phone: +81-726-83-1221

Fax: +81-726-83-4064

Email: neu040@poh.osaka-med.ac.jp

    >